식품 포장 분야에서 바이오센서와 바이오폴리머 기반 나 노복합체, 즉 바이오나노복합체의 통합이 점차 산업 전문 가들에 의해 인식되고 있으며, 이는 식품의 품질과 안전 에 대한 우려가 증가함에 따라 주도되고 있습니다. 식품 포장에 내장된 바이오센서는 포장된 상품의 미생물에 의 한 변질을 지속적으로 모니터링함으로써 식품의 완전성을 유지하는 핵심 요소로 업계를 변화시킬 준비가 되어 있다. 동시에, 탁월한 기계적, 열적, 광학적, 항균적 특성으로 인 해 바이오폴리머 기반 나노복합체의 연구와 적용이 크게 확대되었다. 이러한 특성은 이들을 혁신적인 포장 솔루션 에 적합한 주요 재료로 만든다. 그러나 지능형 식품 포장 시스템 발전에 바이오센서와 바이오나노복합체를 사용하 는 잠재적인 장애물과 전망을 탐구하는 것은 아직 충분하 지 않다. 바이오나노복합체와 바이오센서의 융합을 제안 하는 것은 스마트 포장 산업을 재정의하는 획기적인 단계 로, 이 기술들을 더 깊이 이해하여 지속 가능하고 경제적 으로 실행 가능한 스마트 포장 옵션의 개발을 촉진할 필 요성을 강조한다. 이 리뷰는 바이오센서와 바이오나노복 합체에 대한 기존 연구와 개발 동향을 철저히 검토하고, 가까운 미래에 스마트 식품 포장 산업에서 진전을 이끌어 낼 앞으로의 도전과 기회를 강조하는 데 전념하고 있다.
국립원예특작과학원에서는 밝은 화색과 안정적인 화형의 생 육이 우수한 빨간색 스탠다드 장미 품종을 육성하기 위해 진한 적색 스탠다드 장미 품종 ‘엔드리스러브(Endless Love)’를 모 본으로, 꽃잎수가 많고 안정적으로 가시가 적은 밝은 노란색 ‘페니레인(Penny Lane)’ 품종을 부본으로 인공교배하였다. 37 개의 교배실생을 양성해 1, 2, 3차에 걸친 특성검정 및 현장실증 을 통해 꽃이 크고 화형이 안정적이며, 재배안정성 및 생산성, 절화특성이 우수한 ‘원교 D1-390’을 최종 선발하였다. 2023년 ‘루비레드(Ruby Red)’로 명명하여 국립종자원에 품종보호출원·등록되었다. ‘루비레드’ 품종은 밝은 적색(R53C)을 가졌으 며, 꽃잎수가 32.8매, 화폭과 화고는 각각 10.9, 5.9cm로 대조 품종보다 크다. 절화장은 평균 71.7cm, 절화수명은 약 16.7일, 수량은 연간 168대/m2로 대조품종인 ‘레드스퀘어(Red Square)’ 대비 절화장이 길고 절화수명도 2배 이상 길며, 수확량도 1.4배 우수하다. 2023년 국내 육성 장미 품종 서울식물원 관람객 대상 공동평가회에서 스탠다드 장미 중 우수한 평가를 받았으며, 현 장 실증 결과 농가별로 균일하고 우수한 수량과 절화품질을 보 였다. 절화용 장미 ‘루비레드’ 품종은 밝은 적색과 우수한 화형 을 가지는 품종으로 해외 대체 품종으로 국내에서 많이 재배될 것으로 기대된다.
This study evaluated the efficacy of a wild boar repellent (Repellent A) consisting of tannins and plant oils (castor oil, garlic oil, and cinnamon oil). Sixty farmed wild boars (4-8 months old) were divided into three groups: the normal control group (NC, n=20), the experimental group (EP, n=20), and the comparative experimental group (C-EP, n=20), which used Repellent B consisting of guaiacol, eugenol, menthol, thymol, and indole. EP and C-EP were equipped with four repellents per feeder, while no repellents were installed in the NC feeder. The feed intake and the number of feeding approaches were measured for one week in all groups. The number of approach of wild boars in feeders was monitored daily using a CCTV camera. The daily feed intake per farmed wild boar in EP and C-EP was significantly decreased compared to NC (p<0.05), and EP was significantly decreased compared to C-EP (p<0.05). In the average number of daily approaches, EP and C-EP were significantly decreased compared to NC (p<0.05), and EP was significantly decreased compared to C-EP (p<0.05). In conclusion, Product A has been confirmed to have excellent repellent effects on wild boars, and it could be used to prevent wild boars from approaching pig farms.
A twelve-year-old, spayed female Siamese cat was presented for health screening. Abdominal radiography revealed a large amount of mineral opacity substances of various sizes and shapes, along with mild gaseous dilation proximal to the lesion. Ultrasonography showed hyperechoic surface with acoustic shadowing at the ileum and wall thickening of the ileum. Enterotomy was performed to remove the foreign bodies, which were numerous hairball- and stone-like objects. Analysis of the enteroliths revealed a composition of calcium phosphate. Although enterolithiasis is considered rare in cats, it should be included in the differential diagnosis when numerous pebble-like mineral opacity lesions are observed.
Schlumbergera truncata absorbs CO2 through its mature phylloclades during the night, and can use a substantial amount of CO2 without requiring ventilation. This study investigated the growth and photosynthetic responses of S. truncata ‘Red Candle’ at two CO2 levels—ambient (≈ 400 μmol・mol-1) and elevated (≈ 1000 μmol・mol-1). At 0–8 weeks after treatment (WAT), width and length of mature phylloclade and length of immature phylloclade did not differ significantly among the CO2 treatments. At 4–8 WAT, number of branches and phylloclades were significantly greater in plants grown under ambient CO2 than those under elevated CO2. Net CO2 uptake was highest in mature phylloclades of plants grown under ambient and elevated CO2 regimes at night, at 2.51 and 1.30 μmol·CO2·m-2·s-1, respectively. However, no statistically significant variation was observed at 6 WAT, and stomatal conductance was significantly affected only by CO2 uptake time at 6 and 8 WAT. Water-use efficiency of mature and immature phylloclades at night increased with increase in CO2 levels (r = 0.7462 and 0.9312, respectively). At 123 days after treatment, plants grown under elevated CO2 had 82.7 floral buds, compared to 72.1 buds in those under ambient CO2. However, this difference was not statistically significant. Moreover, S. truncata grown under elevated CO2 exhibited decreased growth and photosynthesis, whereas the number of floral buds did not exhibit any significant differences among the treatments.
This study develops a model to determine the input rate of the chemical for coagulation and flocculation process (i.e. coagulant) at industrial water treatment plant, based on real-world data. To detect outliers among the collected data, a two-phase algorithm with standardization transformation and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is applied. In addition, both of the missing data and outliers are revised with linear interpolation. To determine the coagulant rate, various kinds of machine learning models are tested as well as linear regression. Among them, the random forest model with min-max scaled data provides the best performance, whose MSE, MAPE, R2 and CVRMSE are 1.136, 0.111, 0.912, and 18.704, respectively. This study demonstrates the practical applicability of machine learning based chemical input decision model, which can lead to a smart management and response systems for clean and safe water treatment plant.
많은 연구에 따르면 Tenebrio molitor은 유충 단계에서 플라스틱을 섭취할 수 있다고 보고되었다. 이 연구의 목적은 T. molitor 유충의 성장과 발달에 발포폴리스티렌 섭취가 미치는 영향을 조사하는 것이다. 밀기울을 섭취한 유충의 성장률은 발포폴리스티렌을 섭취한 유충의 성장률보다 더 좋았고(p < 0.001) 발포폴리스티렌을 섭취한 유 충의 번데기로 전환되는 기간은 밀기울을 섭취한 유충의 번데기로 전환되는 기간보다 더 빨랐다(p < 0.001). 하지만 두 처리구간 생존율은 유의미한 차이가 없었다(p = 0.786). 이 결과에 따르면 발포폴리스티렌을 섭취한 유충은 체중 감소와 짧은 발육기간이 특징이지만 생존하는 것에는 문제가 없었다. 따라서 우리는 T. molitor가 플라스틱 폐기물 의 지속 가능하고 친환경적인 제거를 위한 주요 자원이라는 결론을 내렸다.
In the present study, a coal-based pitch containing 12.1% quinoline insoluble (QI) underwent isothermal heat treatment, and changes in the mesophase microstructure were analyzed for the heat treatment duration. The nuclei creation and growth rate of mesophase were affected by the distribution of QI particles in the pitch. The growth process could be explained in four regions through the mesophase area fraction. During the carbonization of carbon blocks, mesophase formation was induced in the binder phase. The physical properties of carbon blocks were measured as a function of residence time. As residence time increased, bulk density decreased and porosity increased, but electrical conductivity increased. It was determined that forming a mesophase in the binder phase during carbonization reduced the size of large pores in carbon block and improved the connectivity between particles, thereby increasing electrical conductivity. These results are expected to show greater improvement in electrical properties after graphitization.
From 2020, Korean Animal and Plant Quarantine Agency has reset the withdrawal time (WT) for veterinary drugs typically used in livestock in preparation for the introduction of positive list system (PLS) program in 2024. This study was conducted to reset the MRL for tiamulin (TML) in broiler chickens as a part of PLS program introduction. Forty-eight healthy Ross broiler chickens were orally administered with TML at the concentration of 25 g/L (TML-1, n=24) and 50 g/L (TML-2, n=24) for 5 days through drinking water, respectively. After the drug treatment, tissue samples were collected from six broiler chickens at 1, 2, 3 and 5 days, respectively. According to the previously established analysis method, residual TML concentrations in poultry tissues were determined using LC-MS/MS. In TML-1, TML in all tissues was detected less than LOQ at 2 days after drug treatment. In TML-2, TML in liver and kidney was detected more than LOQ at 2 days after treatment. According to the European Medicines Agency’s guideline on determination of withdrawal periods, withdrawal periods of TML-1 and TML-2 in poultry tissues were established to 0 and 2 days, respectively. In conclusion, the estimated WT of TML in poultry tissues is shorter than the current WT recommendation of 5 days for TML in broiler chickens.
Helicobacter pylori are known as a causative agent of gastritis, gastric duodenum and peptic ulcer, and gastric cancer, and multiple drug use is associated with various side effects in patients. The discovery of antibacterial substances against H. pylori from Korean resource plants is an important substitute for antibiotics. 52 species of Korean resource plants were collected and extracted with 50% ethanol, and antibacterial activity against H. pylori was measured using the disk diffusion method. The toxicity of plant extracts to human gastric adenocarcinoma(AGS) cells was measured by MTT assay, and the level of IL-8 secreted when gastric epithelial cells were inoculated with H. pylori was measured. As a result of measuring the antibacterial activity of H. pylori, antibacterial activity was confirmed in 38 plant extracts. The plant species with the strongest antibacterial activity were Chrysanthemum indicum, Rheum rhabarbarum, Patrinia scabiosaefolia and Petasites japonicus. C. indicum was not cytotoxic to H. pyroli-infected AGS cells and showed anti-inflammatory effects. This study's results can be used to develop healthy, functional foods and medical materials.
This review explores the potential of pillared bentonite materials as solid acid catalysts for synthesizing diethyl ether, a promising renewable energy source. Diethyl ether offers numerous environmental benefits over fossil fuels, such as lower emissions of nitrogen oxides (NOx) and carbon oxides (COx) gases and enhanced fuel properties, like high volatility and low flash point. Generally, the synthesis of diethyl ether employs homogeneous acid catalysts, which pose environmental impacts and operational challenges. This review discusses bentonite, a naturally occurring alumina silicate, as a heterogeneous acid catalyst due to its significant cation exchange capacity, porosity, and ability to undergo modifications such as pillarization. Pillarization involves intercalating polyhydroxy cations into the bentonite structure, enhancing surface area, acidity, and thermal stability. Despite the potential advantages, challenges remain in optimizing the yield and selectivity of diethyl ether production using pillared bentonite. The review highlights the need for further research using various metal oxides in the pillarization process to enhance surface properties and acidity characteristics, thereby improving the catalytic performance of bentonite for the synthesis of diethyl ether. This development could lead to more efficient, environmentally friendly synthesis processes, aligning with sustainable energy goals.