In present work, manufacturing technologies of titanium hydride powder were studied for recycling of titanium tuning chip and for this, attrition ball milling was carried out under H2 pressure of 0.5 MPa. Ti chips were completely transformed into TiH2 within several hundred seconds. Dehydrogenation process TiH2 powders is consist of two reactions: one is reaction of TiH2 to TiHx and the other decomposition of TiHx to Ti and H2. The former reaction shows relatively low activation energy and it is suggested that the reaction is caused by introduction of defects due to milling.
Manufacturing technologies of micro parts were studied in nano grained Al-1.5mass%Mg alloy. During compressive test at 300 , the Al alloy showed stain softening ℃ phenomenon by grain boundary sliding regardless of strain rate. Micro spur gear with ten teeth (height of 200 μm and pitch of 250 μm) was fabricated with sound shape by micro forging. During micro forging, increase of applied stress induced by friction between material and die surface was effectively compensated by decrease of stress by strain softening behavior and as a result, flow stress increased only about 50 MPa more than that in compressive test.