Composite pavements are constructed by placing a high functional asphalt surface layer on a high performance concrete rigid base layer and provide a more durable, high functional surface to road users. Service life of composite pavements is dependent on the bonding performance of the lower rigid base and the flexible surface layer. Accordingly, it is necessary to place an impermeability layer between the functional surface layer and the rigid base to enhance bonding performance and to prevent moisture penetration into the rigid base and deterioration of pavement. In order to use optimal composite pavement sections, two types were applied to impermeability layer: highly impermeable water-tight SMA and mastic asphalt currently in use. APT (Accelerated Pavement Testing) and experimental construction were carried out to evaluate bond strengths between the rigid base and the impermeability layer depending on the type of impermeability layers. Composite pavement sections for the APT had a 22 cm concrete rigid base layer and a 5cm functional surface, as well as either 5cm of SMA impermeability layer and 5cm of mastic layer. After applying around 8,574,000 ESALs, pull-off test was conducted, which showed that the mastic section outperformed the SMA section. In the experimental construction, three types of rigid base layers, JCP (Jointed Concrete Pavement), CRCP (Continuously Reinforced Concrete Pavement), and RCCP (Roller Compacted Concrete Pavement), were used for composite pavement sections, and as in the APT, two types of impermeability layers, SMA and mastic, were used per rigid base layer of new and deteriorated concrete pavement. Therefore, seven composite pavement sections in total were constructed. We measured the bond strength over one year or so following the construction of these composite pavement sections and found that regardless of the type of rigid base layer and whether it was new or not, those sections with a mastic impermeability layer had high bond strengths.
The purpose of this study is to understand the relationship between female college students’ stress level and premenstrual syndrome so that it can provide baseline data on how to cope with the syndrome. The study subjects are 250 female college students in Gyungbook area. This study chose 199 appropriate subjects and collected data. As per general menstrual phases, this study investigated the age when one had her first period, regularity and duration of period, and amount of bleeding. It used a measurement tool to measure stress level and premenstrual syndrome. Most of the subjects experienced their first period before the age of 13. The menstrual period was irregular with the duration of less than 7 days. 123 subjects had normal amount of bleeding. 121 subjects were experiencing high level of stress over 2.4. The correlation between the level of stress and premenstrual syndrome factors showed significant static correlation for each factor. Especially, the correlation between digestive system and response of autonomic nervous system was .996 and negative emotion and behavioral change was .635, and negative emotion and pain was .614 which were relatively high. The regression analysis of factors of premenstrual syndrome depending on the subjects’ stress level indicated that response of autonomic nervous system had the biggest effect in the low stress group while behavioral change, negative emotion, pain, decreased concentration, water congestion, response of autonomic nervous system, and skin change had the biggest effect in the high stress group with statistical significance. Based on the result, it can be said that higher premenstrual stress is closely related to the premenstrual syndrome one experiences for some female college students.
This study was carried out to investigate the effects of making an origami crane on the improvement of hand dexterity. Subjects composed of 20 normal adult males were randomly assigned to experimental and control groups of 10 people respectively. For the experimental group, a training of making an origami crane was conducted for 40 to 50 minutes a day during a 4-week training period. The control group was made to engage in everyday activities as usual. For pre and post assessment, Groove Pegboard test, Purdue Pegboard Test, and Jebsen Hand Function Test were used. The results on the effects of making an origami crane showed that there was a statistically significant difference in both the Grooved Pegboard test and Purdue Pegboard test(p<.05). In the Jebsen hand function Test, a significant difference was found in handwriting and building pieces of chess(p<.05), but there was no statistically significant difference in comparison with the right hand during the average performance of picking up small stuffs. The activity of making an origami crane for normal adults was confirmed to be helpful to improve the hand dexterity. Accordingly, making an origami crane is suggested to be an effective way to improve the hand dexterity.
The objective of this study was to determine the effect of macrophages on growth of human colon cancer cells. The results showed that co-culture of colon cancer cells with macrophages inhibited the growth of colon cancer cells (HCT116 and SW620) depending on the number of macrophages, RAW 264.7 cells, and activated THP-1 cells accompanied by down regulation of pSTAT3 in cancer cells. We also found that expression and release of cancer cell growth inhibitory cytokines, IL-1 receptor antagonist (IL-1ra) and IL-10, was increased in macrophages. Blocking of the STAT3 pathway with specific inhibitor and siRNA of STAT3 abolished the growth of colon cancer cells and expression of IL-1ra and IL-10. In addition, neutralization of IL-1ra and IL-10 with antibodies resulted in reversal of macrophage-induced inhibition of cancer cell growth. These data showed that IL-1ra and IL-10 released from macrophages inhibit growth of colon cancer cells through inhibition of the STAT3 pathway.