Antimicrobial peptides are widely found in living organisms and are known to play a critical role in innate immunity. Numerous antimicrobial peptides from diverse species appear to be effective against pathogenic microorganisms of bacteria, fungi, protozoa, and viruses. Because antibiotic resistance is a global health issue in the fight against pathogenic microorganisms, there has been an urgent need for development of new antibiotic substances. In the current study, we performed yeast two hybrid screening using Beclin1 bait in order to find new peptide antibiotics from a random peptide library. Two candidate peptides from the screening were expressed in a yeast secretory system of Pichia pastoris and tested for any antimicrobial activity against Staphylococcus aureus, MRSA, MRSA2242, MRSA2250, Lactobacillus casei, and Lactobacillus acidophilus. Disc clear zone assay and spectrophotometric analysis revealed that the two peptides exert a decent activity against the pathogenic bacteria, in contrast to minimal effect on the commensal Lactobacillus strains. Taken together, this study presents novel peptides with antibacterial activity against the pathogenic forms of Staphylococcus aureus and suggests the possibility that these peptides, upon further characterization, may be developed as clinically useful antibiotics.
The objective of this study was to determine the effect of macrophages on growth of human colon cancer cells. The results showed that co-culture of colon cancer cells with macrophages inhibited the growth of colon cancer cells (HCT116 and SW620) depending on the number of macrophages, RAW 264.7 cells, and activated THP-1 cells accompanied by down regulation of pSTAT3 in cancer cells. We also found that expression and release of cancer cell growth inhibitory cytokines, IL-1 receptor antagonist (IL-1ra) and IL-10, was increased in macrophages. Blocking of the STAT3 pathway with specific inhibitor and siRNA of STAT3 abolished the growth of colon cancer cells and expression of IL-1ra and IL-10. In addition, neutralization of IL-1ra and IL-10 with antibodies resulted in reversal of macrophage-induced inhibition of cancer cell growth. These data showed that IL-1ra and IL-10 released from macrophages inhibit growth of colon cancer cells through inhibition of the STAT3 pathway.
As a sensor of cellular energy status, AMP-activated protein kinase (AMPK) plays an important role in the pathophysiology of diabetes and its complications. Because AMPK is also expressed in podocytes, podocyte AMPK would be an important factor contributing to development of podocyte injury. We investigated the roles of AMPK in the pathological changes of podocyte synaptopodin induced by angiotensin II (Ang II), a major injury inducer. Mouse podocytes were incubated in media containing various concentrations of Ang II and AMPK-modulating agents, and the changes of synaptopodin were analyzed by confocal imaging and Western blotting. Ang II and compound C, an AMPK inhibitor, concentrated and re-localized synaptopodin from peripheral cytoplasm to the internal cytoplasm portion in podocytes. Ang II also reduced synaptopodin protein and mRNA, which were reversed by metformin and 5-aminoimidazole-4-carboxamide ribonucleoside. Losartan, an Ang II type 1 receptor antagonist, also recovered synaptopodin mRNA, which was suppressed by Ang II. We suggest that Ang II induces the relocation and suppression of podocyte synaptopodin by suppression of AMPK and via Ang II type 1 receptor, which would be an important mechanism in Ang II-induced podocyte phenotypical changes.
This study was conducted for evaluation of the alleviating effects of Phellodendrin cortex water extract (PCWE) on skin inflammation in hairless mice. Skin inflammation was induced by UVB irradiation and application of squalene monohydroperoxide (Sq-OOH) to the back skin of hairless mice for six weeks. At the same time, saline (C), jojoba oil (VC), PCWE (E), and 0.01% retinoic acid diluted with polyethylene glycol (PC) were applied topically twice per day, six days per week for a period of six weeks. The skin erythema index of the E group was lower than that of the C group. Epidermis and dermis of the C group were remarkably thickened, compared to the PC or E group. In the C group, infiltration of many inflammatory cells, including neutrophils and lymphocytes, was observed in dermis, and a large number of mast cells were observed in dermis and hypodermis; the degree of degranulation was remarkable. However, these phenomena were alleviated in the PC and E2 groups. The E group showed a lower activity in skin xanthine oxidase but a higher activity in skin superoxide dismutase, compared to the C group (P<0.05). The VC, PC, and E groups also showed a high activity of skin catalase by 25.3%, 58%, and 42%, respectively, compared to the C group. Taken together, these results indicate that PCWE could have an alleviating efficacy on skin inflammation induced by UVB irradiation and application of Sq-OOH in hairless mice.
Endocrine disrupting chemicals (EDCs) have detrimental effects on human health. Among these EDCs, bisphenol A (BPA) binds to estrogen receptors (ERs) to stimulate estrogen-mediated responses. BPA is assumed to disrupt the reproductive and developmental system of humans. In addition, BPA has recently been suspected as a risk of carcinogenesis. Because BPA can cause abnormal estrogen-mediated response in the organism, exposure to BPA may stimulate growth of estrogen-dependent breast cancers in human. In breast cancer, cyclin E and cyclin-dependent kinase inhibitor p27 are important in G1/S phase transition during cell cycle progression. In this study, using an MTT assay, we investigated the effect of BPA on proliferation of MCF-7 breast cancer cells in vitro. In addition, we also analyzed the transcriptional levels of cyclin E and p27 following treatment with BPA using semi-quantitative RT-PCR. As a result, treatment with BPA resulted in significant induction of breast cancer cell growth, compared to a vehicle. BPA caused alterations of cyclin E and p27 mRNA expression. Expression of cyclin E was increased by BPA, while p27 was decreased at 24 h after treatment with BPA in MCF-7 breast cancer cells. Taken together, these collective results suggest that exposure to BPA induced breast cancer cell proliferation with deregulation of the cell cycle. A further study is required in order to determine the effects of BPA on the carcinogenic process in in vivo models.
Pneumatosis cystoides intestinalis (PCI) is a rare condition characterized by multiple intramural pockets of gas filled cysts in the intestinal wall. PCI is usually found incidentally on an imaging study. Many different causes of PCI have been suggested, including mechanical, pulmonary, and bacterial causes. Treatment is usually conservative, including oxygen and antibiotic therapy. We report on two cases of PCI, without symptoms, in a 62-year-old male and a 72-year-old male. Computed tomography showed numerous, small, round, and air densities on the sigmoid colon. Colonoscopy showed numerous, variable-sized, sessile polypoid, balloon-like distended, and protruding subepithelial masses covered with normal colonic mucosa on the sigmoid colon. We observed that when the cyst was stuck with a needle, the size of the cyst was reduced and showed a flat termination. Therefore, we made a diagnosis of PCI and report on the case with references.