검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2023.05 구독 인증기관·개인회원 무료
        The acoustic emission (AE) method as a passive non-destructive monitoring technique is proposed for real-time monitoring of mechanical degradation in underground structures, such as deep geological disposal of high-level nuclear waste (HLW). This study investigates the low-frequency characteristics of AE signals emitted during the fracturing of meter-scale concrete specimens; uniaxial compression tests (UCT) in a lab scale and Goodman jack (GJ) tests in a 1.3 m-long concrete block were conducted while acquiring the AE signals using low-frequency AE sensors. The results indicate a sharp increase in AE energy emission at approximately 60% and 80% of the yield stresses in the UCT and GJ tests, respectively. The collected AE signals were primarily found in two frequency bands: the 4-28 kHz range and the 56-80 kHz range. High-frequency AE signals were captured more as the stress increased in the GJ tests, which was in contrast to the UCT tests. Furthermore, the AE signals obtained from the Goodman jack tests tended to lower RA values than the UCT results. This study presents unique experimental data with low-frequency AE sensors under different loading conditions, which provides insights into field-scale AE monitoring practices.
        2.
        2022.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The acoustic emission (AE) is proposed as a feasible method for the real-time monitoring of the structural damage evolution in concrete materials that are typically used in the storage of nuclear wastes. However, the characteristics of AE signals emitted from concrete structures subjected to various environmental conditions are poorly identified. Therefore, this study examines the AE characteristics of the concrete structures during uniaxial compression, where the storage temperature and immersion conditions of the concrete specimens varied from 15℃ to 75℃ and from completely dry to water-immersion, respectively. Compared with the dry specimens, the water-immersed specimens exhibited significantly reduced uniaxial compressive strengths by approximately 26%, total AE energy by approximately 90%, and max RA value by approximately 70%. As the treatment temperature increased, the strength and AE parameters, such as AE count, AE energy, and RA value, of the dry specimens increased; however, the temperature effect was only minimal for the immersed specimens. This study suggests that the AE technique can capture the mechanical damage evolution of concrete materials, but their AE characteristics can vary with respect to the storage conditions.
        4,000원
        3.
        2022.05 구독 인증기관·개인회원 무료
        Deep geologic disposal of high-level nuclear wastes (HLW) requires intensive monitoring instrumentations to ensure long-term security. Acoustic emission (AE) method is considered as an effective method to monitor the mechanical degradation of natural rock and man-made concrete structures. The objectives of this study are (a) to identify the AE characteristics emitted from concretes as concrete materials under different types of loading, (b) to suggest AE parametric criteria to determine loading types and estimate the failure stage, and finally (c) to examine the feasibility of using AE method for real-time monitoring of geologic disposal system of HLW. This study performs a series of the mechanical experiments on concrete samples simultaneously with AE monitoring, including the uniaxial compression test (UCT), Brazilian tensile test (BTT) and punch through shear test (PTST). These mechanical tests are chosen to explore the effect of loading types on the resulting AE characteristics. This study selects important AE parameters which includes the AE count, average frequency (AF) and RA value in the time domain, and the peak frequency (PF) and centroid frequency in the frequency domain. The result reveals that the cumulative AE counts, the maximum RA value and the moving average PF show their potentials as indicators to damage progress for a certain loading type. The observed trends in the cumulative AE counts and the maximum RA value show three unique stages with an increase in applied stress: the steady state stage (or crack initiation stage; < 70% of yield stress), the transition stage (or damage progression stage; 70–90% of yield stress) and the rising stage (or failure stage; > 90% of yield stress). In addition, the moving average PF of PTST in the early damage stage appears to be particularly lower than that of UCT and BTT. The loading in BTT renders distinctive responses in the slope of the maximum RA–cumulative AE count (or tan ). The slope value shows less than 0.25 when the stress is close to 30% of BTT, 60% of UCT and 75% of PTST and mostly after 90% of yield stress, the slope mostly decreases than 0.25 in all tests. This study advances our understanding on AE responses of concrete materials with well-controlled laboratoryscale experimental AE data, and provides insights into further development of AE-base real-time diagnostic monitoring of structures made of rocks and concretes.