검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2012.12 KCI 등재 서비스 종료(열람 제한)
        The present study was conducted to determine the effect of hexaconazole (HEX), a triazole fungicide, on the growth, yield, photosynthetic response and antioxidant potential in cucumber (Cucumis sativus L.) plants subjected to UV-B stress. UV-B radiation and HEX were applied separately or in combination to cucumber seedlings. The growth parameters were significantly reduced under UV-B treatment, however, this growth inhibition was less in HEX treated plants. HEX caused noticeable changes in plant morphology such as reduced shoot length and leaf area, and increased leaf thickness. HEX was quite persistent in inhibiting shoot growth by causing a reduction in shoot fresh and dry weight. HEX noticeably recovered the UV-B induced inhibition of biomass production. Significant accumutation in anthocyanin and flavonoid pigments in the leaves occurred as a result of HEX or UV-B treatments. HEX permitted the survival of more green leaf tissue preventing chlorophyll content reduction and higher quantum yield for photosystemⅡ under UV-B exposure. HEX treatment induced a transient rise in ABA levels in the leaves, and combined application of HEX and UV-B showed a significant enhancement of ABA content which activates H2O2 generation. UV-B exposure induced accumulation of H2O2 in the leaves, while HEX prevented UV-B induced increase in H2O2, indicating that HEX serves as an antioxidant agent able to scavenge H2O to protect cells from oxidative damage. An increase in the ascorbic acid was observed in the HEX treated cucumber leaves affecting many enzyme activities by removing H2O2 during photosynthetic processes. The activities of antioxidant enzymes including catalase(CAT), ascorbate peroxidase(APX), superoxide dismutase(SOD) and peroxidase(POD) in the leaves in the presence of HEX under UV-B stress were higher than those under UV-B stress alone. These findings suggest that HEX may participate in the enhanced tolerance to oxidative stress. From these results it can be concluded that HEX moderately ameliolate the effect of UV-B stress in cucumber by improving the components of antioxidant defense system.
        2.
        2011.12 KCI 등재 서비스 종료(열람 제한)
        The protective effect of nitric oxide (NO) on the antioxidant system under paraquat(PQ) stress was investigated in leaves of 8-week-old lettuce (Lactuca sativa L.) plants. PQ stress caused a decrease of leaf growth including leaf length, width and weight. Application of NO donor, sodium nitroprusside (SNP), significantly alleviated PQ stress induced growth suppression. SNP permitted the survival of more green leaf tissue preventing chlorophyll content reduction and of higher quantum yield for photosystem Ⅱ than in non-treated controls under PQ exposure, suggesting that NO has protective effect on chloroplast membrane in lettuce leaves. Flavonoids and anthocyanin were significantly accumulated in the leaves upon PQ exposure. However, the rapid increase of these compounds was alleviated in the SNP treated leaves. PQ treatment resulted in lipid peroxidation and induced accumulation of hydrogen peroxide (H2O2) in the leaves, while SNP prevented PQ induced increase in malondialdehyde (MDA) and H2O2. These results demonstrate that SNP serves as an antioxidant agent able to scavenge H2O2 to protect plant cells from oxidative damage. The activities of two antioxidant enzymes that scavenge reactive oxygen species, superoxide dismutase (SOD) and catalase (CAT) in lettuce leaves in the presence of NO donor under PQ stress were higher than those under PQ stress alone. Application of 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3- oxide (PTIO), a specific NO scavenger, to the lettuce leaves arrested SNP mediated protective effect on leaf growth, photosynthetic pigment and antioxidant systems. However, PTIO had little effect on lettuce leaves under PQ stress compared with that of PQ stress alone. The obtained data suggest that the damage caused by PQ stress is in part due to increased generation of active oxygen by maintaining increased antioxidant enzyme activities and SNP protects plants from oxidative stress. From these results it is suggested that NO might act as a signal in activating active oxygen scavenging system that protects plants from oxidative damage induced by PQ stress and thus confer PQ tolerance.
        3.
        2010.12 KCI 등재 서비스 종료(열람 제한)
        The effect of nitric oxide (NO) on antioxidant system and protective mechanism against oxidative stress under UV-B radiation was investigated in leaves of maize (Zea mays L.) seedlings during 3 days growth period. UV-B irradiation caused a decrease of leaf biomass including leaf length, width and weight during growth. Application of NO donor, sodium nitroprusside (SNP), significantly alleviated UV-B stress induced growth suppression. NO donor permitted the survival of more green leaf tissue preventing chlorophyll content reduction and of higher quantum yield for photosystem Ⅱ than in non-treated controls under UV-B stress, suggesting that NO has protective effect on chloroplast membrane in maize leaves. Flavonoids and anthocyanin, UV-B absorbing compounds, were significantly accumulated in the maize leaves upon UV-B exposure. Moreover, the increase of these compounds was intensified in the NO treated seedlings. UV-B treatment resulted in lipid peroxidation and induced accumulation of hydrogen peroxide (H2O2) in maize leaves, while NO donor prevented UV-B induced increase in the contents of malondialdehyde (MDA) and H2O2. These results demonstrate that NO serves as antioxidant agent able to scavenge H2O2 to protect plant cells from oxidative damage. The activities of two antioxidant enzymes that scavenge reactive oxygen species, catalase (CAT) and ascorbate peroxidase (APX) in maize leaves in the presence of NO donor under UV-B stress were higher than those under UV-B stress alone. Application of 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3- oxide (PTIO), a specific NO scavenger, to the maize leaves arrested NO donor mediated protective effect on leaf growth, photosynthetic pigment and free radical scavenging activity. However, PTIO had little effect on maize leaves under UV-B stress compared with that of UV-B stress alone. Nω -nitro-L-arginine (LNNA), an inhibitor of nitric oxide synthase (NOS), significantly increased H2O2 and MDA accumulation and decreased antioxidant enzyme activities in maize leaves under UV-B stress. This demonstrates that NOS inhibitor LNNA has opposite effects on oxidative resistance. From these results it is suggested that NO might act as a signal in activating active oxygen scavenging system that protects plants from oxidative stress induced by UV-B radiation and thus confer UV-B tolerance.
        4.
        2010.02 KCI 등재 서비스 종료(열람 제한)
        The distribution of benthic macroinvertebrates in Daecheon stream, an urban stream of Busan, was investigated to analyze the community structure of benthic macroinvertebrates. The collection was peformed monthly at five(A~E) sites divided into three parts, upper, middle and lower, of stream from January to November, 2004. In physicochemical analysis of environmental factors, water quality parameters such as BOD, COD, conductivity and ABS were relatively increased in sites B and C. Whereas sites A, D and E showed little variations with good water quality parameters. However, water quality parameters in all surveyed sites showed gradual decrease with time toward improvement of water quality. A total of 8,226 individuals including 4 phyla, 6 classes, 9 orders, 302 families and 44 species were identified from five sites. The most dominant group was insect(class Insecta), and order Ephemeroptera and Diptera among insect was the largest member in species(30.6%) and individuals(75.0%) of benthic macroinvertebrates, respectively. The primary dominant species were Gammarus sp. and Ephemera strigata in site A, whereas Chironomus sp. and Brenchiura sowerbyi were dominated commonly in the other sites. In community analysis of benthic macroinvertebrates of Daecheon stream diversity index showed relatively low values, whereas dominance index was significantly high. Diversity index was the highest in site A, whereas the dominance index was the highest in site B. However, diversity index showed gradual increase with time showing adverse mode in dominance index. From these results, it can be suggested that long-term ecological monitoring of benthic macroinvertebrate fauna is needed for sustainable management of Daecheon stream.
        5.
        2008.11 KCI 등재 서비스 종료(열람 제한)
        The effect of freeze drying and fixatives in post-treating freeze drying on the morphological properties of the rose (Rosa hybrida L.) petal were investigated for the production of high quality of freeze dried rose. The morphology including form and color of the dried flowers of cut rose were depended on the drying methods. The drying time was extended due to their density and water content, and was shorter in the freeze drying than that in the natural and hot air drying. Freeze dried process for dried flowers took 2 days in a freeze dryer and did not cause shrinkage or toughening of rose petal being dried, preserving its natural shape and color. The diameter of freeze dried flowers showed little reduction compared to fresh flowers. In Hunter color values of petals of freeze dried flowers, L and a values were high and showed little variations in comparison to fresh petals. Freeze drying led to a noticeable increase in anthocyanin contents in petals, suggesting that anthocyanin contents play an important role in the acquisition of freezing tolerance. Exposure of flowers to freeze drying was accompanied by an increase in the carotenoid content. In the post-treating freeze drying, epoxy resin, a fixative, applied alone or in combination to petals of freeze dried flowers showed efficient coating for the protection from humidity and sunlight. Combined application of epoxy and acetone to freeze dried petals permitted maintenance of natural color and excellent tissue morphology, showing color stability and shiny texture in surface of petals. These findings suggest that application of fixatives to freeze dried rose petals improves the floral preservation and epoxy coating provides good quality in the freeze dried flower product.
        6.
        2005.12 KCI 등재 서비스 종료(열람 제한)
        Effects of abscisic acid(ABA) and temperature on the anthocyanin accumulation and phenylalanine ammonia lyase(PAL) activity were investigated in seedlings of Arabidopsis thaliana. In time course study, exogenous application of ABA (50-1000 μM) led to a noticeable increase in anthocyanin pigments which persisted over the following 5 days. Anthocyanins increased in concert with the chlorophyll loss. The activity of PAL, a key enzyme in the phenylpropanoid pathway, increased on exposure to ABA and reached maximum on the 4th day. This result shows that anthocyanin synthesis and PAL activity have a close physiological relationships. In the effects of temperatures (10℃, 17℃, 25℃ and 30℃) on anthocyanin accumulation and PAL activity in seedlings, a moderate-low temperatures (17℃) enhanced both anthocyanin content and PAL activity, whereas elevated temperatures (30℃) showed low levels of anthocyanin and PAL activity, suggesting a correlation between temperature-induced anthocyanin synthesis and the accumulation of PAL mRNA. Simultaneous application of ABA with temperatures induced higher anthocyanin synthesis and PAL activity in seedlings than ABA or temperature stress alone. Moderate-low temperature with ABA exposure elicited the maximal induction of anthocyanin synthesis and PAL activity. Therefore, ABA treatment significantly increased thermotolerance in A. thalinan seedlings. Ethephon and ABA showed similar mode of action in physiological effects on anthocyanin accumulation and PAL activity. Our data support that anthocyanins may be protective in preventing damage caused by environmental stresses and play an important role in the acquisition of freezing tolerance.
        7.
        2004.08 KCI 등재 서비스 종료(열람 제한)
        The effect of nickel (Ni) on growth and some tolerance strategies with regard to heavy metal tolerance mechanism was investigated in radish (Raphanus sativus) seedlings. The protective effect of histidine on nickel stress conditions was also monitored. The seedling growth decreased with an increase in metal concentrations. The inhibitory effect was more pronounced in the root elongation than in the shoot elongation. Increasing Ni supply showed a progressive increase of Ni concentrations in the roots and shoots. Ni content was higher in the shoots than in the roots. In the presence of nickel, radish exhibited an antioxidative defense mechanism, as evidenced by the elevated malondialdehyde(MDA), showing that nickel is an efficient inducer of lipid peroxidation. Exposure of radish to elevated concentrations of nickel was accompanied by an increase in the proline content. Supplemental histidine in the presence of Ni ameliorated metal-induced growth inhibition and lipid peroxidation. Combinations of Ni and histidine resulted in a significant decline in proline content compared with Ni stress alone, indicating that histidine may provide protection against the adverse effect of Ni stress. From the results it is suggested that histidine is an efficient chelator by complexing metal ion within the plant and may play a role in nickel tolerance implicated in metal detoxification.
        8.
        2003.11 KCI 등재 서비스 종료(열람 제한)
        The effect of boron and aluminum on the development of adventitious roots was studied in sunflower cuttings. Three-day-old seedlings were de-rooted and grown in nutrient solutions with or without boron and supplemented with different concentrations (from 50 to 700 μM) of aluminum. The number and length of the adventitious roots and proline content in adventitious roots in response to insufficient boron and aluminum stress were determined periodically. The micronutrient boron caused the development of numerous roots in the lower parts of the hypocotyl. A dose-response of boron-induced rooting yielded an optimum concentration of 0.1 mM boron. In the absence of boron, in the majority of the adventitious roots, a significant inhibition was observed with or without aluminum, indicating that the most apparent symptom of boron deficiency is the cessation of root growth. Increasing concentrations of aluminum caused progressive inhibition of growth and rooting of the hypocotyls, and a parallel increase in proline levels of adventitious roots. Supplemental boron ameliorated the inhibitory effect of aluminum, suggesting that aluminum could inhibit root growth by inducing boron deficiency. Ascorbate added to medium in the absence of boron improved root growth and induced a significant decrease in proline levels. These findings suggest that adventitious root growth inhibition resulting from either boron deficiency or aluminum toxicity may be a result of impaired ascorbate metabolism.
        11.
        1996.12 KCI 등재 서비스 종료(열람 제한)
        The toxic effects of aluminium (Al) on growth, chlorophyll content, δ-aminolevulinic acid dehydratase (ALAD) activity and anatomy of root and shoot were investigated in 7-day-old azuki bean (Vigna angularis) seedlings. Significant depressions in root elongation was observed in the low concentrations of Al (50, 100 ㎛) and increasing Al concentrations caused a sharp decline of root and shoot growth. The degree of inhibition was dependent upon Al supply. Exposure to 50 ㎛ Al or more inhibited root elongation within 1 day. In the 50 ㎛ Al treatments, a recovery of root growth was seen after 7 days exposure. In contrast, lateral root initials was little affected by Al exposure. Al toxicity symptoms and growth responses were more well developed in the roots than in the shoots. Analysis of Al localization in root cells by hematoxylin staining showed that Al entered root apices and accumulated in the epidermal and cortical cells immeadiately below the epidermis. There was a good positive correlation between the level of chlorophyll and ALAD activity. Increasing Al concentrations caused a decrease in total chlorophyll contents, accompanied by proportional changes in ALAD activity, suggesting a coordinated reduction of a photosynthetic machinery. Al exerted specific influence on the morphology of root and shoot. At higher concentrations of Al the roots induced drastic anatomical changes. The epidermal cells were disorganized or destructed while the cortical cells exhibited distortion of cell shape and/or disintegration. The diameter of root and transectional area of cortical cells decreased considerably with Al treatment. In the shoot Al also enhanced reduction of diameter of shoot and cell size. Gross anatomy of leaves treated with Al did not differ significantly from the controls, except for fewer and smaller chloroplast. Our results indicate that toxic effect of Al appear to be manifested primarily in roots and secondarily on shoots, and changes in root morphology are related to changes in the root growth patterns. Results are further discussed in relation to the findings in other plant species, and it is concluded that Al causes morphological, structural and, presumably, functional damage to the roots of the species investigated.