In this study, Bacillus velesensis TJS119, isolated from freshwater, demonstrated growth inhibition against insect pathogenic fungi. The culture medium of the B. velezensis TJS119 strain underwent sequential fractionation with n-hexane, chloroform, ethyl acetate, n-butanol, and water. Notably, the n-butanol fraction exhibited significant antifungal activity against Metarhizium anisopliae and Beauveria bassiana. LC/MS analysis of antifungal peaks identified the production of various lipopeptides by B. velezensis TJS119, including two types of iturin A (C14, C15), four types of fengycin A (C14, C15, C16, C17), and two types of fengycin B (C16, C17). The antifungal efficacy of Iturin A and Fengycin against insect pathogenic fungi was further validated using the paper disc diffusion method. These findings underscore the potential of B. velezensis TJS119 as a promising candidate for future research and applications in the realm of agricultural biological controls against fungal diseases.
Protaetia brevitarsis seulensis larvae from industrial insects are traditionally recognized as functional health foods in South Korea. We evaluated the immuno-modulatory effects of feeding beneficial microorganism (Bacillus velezensis TJS119) to P. brevitarsis larvae as a dietary source. In this study, we investigated the immune-enhancing activities of P. brevitarsis larvae hot-water extract (PLW) and PLW after treatment with B. velezensis TJS119 (PLWB) using the RAW 264.7 macrophage cell line. We examined the effects of PLWB on cell proliferation, cytokine production, and nitric oxide production in RAW264.7 cells. PLWB showed no cytotoxicity at concentrations ranging from 7.8 to 1,000 μg/mL in RAW264.7 cells. Treatment with PLWB increased the production of nitric oxide and pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β)] at doses of 62.5 to 1,000 μ g/mL in RAW264.7 cells. As a result, PLWB exhibited a stronger immune-enhancing effect compared to PLW. In conclusion, the results of this study offer experimental evidence to support the potential utilization of PLWB as an immunity-enhancing nutraceutical ingredient.
Bacillus velezensis TJS119 was isolated from the freshwater, and antagonistic activity against of pathogenic fungi. Strain TJS119 showed a broad spectrum of antagonistic activities many fungal pathogens, including the green muscardine fungus Metarhizium anisopliae. The whole-genome sequence of B. velzensis TJS119 was analyzed using the illumina platform. The genome comprises a 3,809,913 bp chromosome with a G + C content of 46.43%, 3,834 total genes, 10 rRNA and 73 tRNA genes. The genome contained a total of 8 candidate gene clusters (difficidin, fengycin, bacillaene, macrolactin, bacillibactin, bacilysin, surfactin and butirosin) to synthesize secondary metabolite biosynthesis. Overall, our data will aid future studies of the biocontrol mechanisms of B. velezensis TJS119 and promote its application in insect disease control.
The Lactobacillus brevis 340G strain isolated from traditional Korean fermented food (kimchi) produced 15.50mMof γ-aminobutyric acid (GABA) after 48 h of cultivation in MRS media containing 1% L-monosodium glutamate(MSG). The culture conditions of Lb. brevis 340G were optimized for GABA production. Lb. brevis 340G was cul-tivated at 30oC in optimized MRS media containing 3% sucrose and 2% yeast extract with 3% MSG, resulting inmaximum GABA production (68.77mM) after 54 h of cultivation. Skim milk fermented with Lb. brevis 340G pro-duced 4.64mM of GABA in the presence of 1% MSG. These results suggest that Lb. brevis 340G could be usedas a starter for functional fermented foods and skim milk fermented with Lb. brevis 340G could be further devel-oped to become functional dairy food fortified with GABA.