검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2024.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        We analyzed the mineral composition of compacted calcium bentonite (GJ-I) and uncompressed sodium bentonite (MX80), both of which were exposed for two years in the YS03 borehole. The YS03 borehole is characterized by a high concentration of anaerobic microorganisms, including sulfate-reducing bacteria, elevated levels of hydrogen sulfide, and high pH conditions. The compacted Ca bentonite showed minimal alteration, with a small amount of new magnetite formation. However, an X-ray diffraction (XRD) analysis revealed that the uncompressed Na bentonite underwent a complete transformation from montmorillonite to muscovite, goethite, and magnetite. Therefore, it is suspected that the compactness of the bentonite significantly impacts the rate of alteration. Furthermore, an X-ray fluorescence (XRF) analysis demonstrated a marked increase in iron oxide in the Na bentonite, whereas key elements of montmorillonite such as alumina (Al2O3), silica (SiO2), and magnesium oxide (MgO) showed substantial decreases. The presumed cause of the alteration in the uncompressed MX80 bentonite is the presence of Fe cations coupled with a high pH environment. We believe that Fe cations, which were likely released from the corrosion of cast iron, played a significant role in altering the montmorillonite lattice.
        3.
        2023.11 서비스 종료(열람 제한)
        Buffer materials play an important role in preventing the leakage of radionuclides from the residue. The mineralogical properties of these buffer materials are critical in repository design. This study presents the fundamental properties of Na-type MX80 and a novel Ca-type Bentonil- WRK. The CaO to MgO ratio in Bentonil-WRK was approximately 1:1, and the CaO to Na2O ratio was approximately 2.8:1. These results suggest that Bentonil-WRK demonstrates a lower swelling index compared to Gyeongju bentonite due to its CaO-to-MgO ratio’s proximity to 1:1, despite having a higher montmorillonite content than Gyeongju bentonite. The results of this research can provide useful foundational data for the evaluation of the thermal-hydraulic-mechanical-chemical behavior of buffer materials.
        4.
        2022.10 서비스 종료(열람 제한)
        The backfill refills the deep geological disposal system after the installation of buffer in the disposal hole. SKB and Posiva have established the safety function for the backfill such as hydraulic conductivity of 10-10 m/s and swelling pressure of 0.2 MPa. The study on the thermal properties is required for the evaluation of performance design and long-term stability of backfill, since the thermal condition affects the hydraulic and mechanical behavior of backfill. Thermal conductivity is a key characteristic of thermal properties due to heat dissipation from spent fuel. In this study, thermal conductivities of bentonite-sand mixed blocks were measured. The silica sands were used instead of the crushed rock with bentonil-WRK, one of the candidate bentonite of the Korean repository system. The effects of size distribution and mass ratio of sand were evaluated. Four different size of silica sand (i.e., 0.18-0.25, 0.7-1.12, 1.6-2.5, 2.5-5.0 mm) and five mixing ratio (i.e., 1:9, 2:8, 3:7, 4:6, 5:5 of bentonite and sand) were used for characterization of thermal conductivity. As a result, the thermal conductivities were measured ranging from 1.6 to 3.1 W/m∙K depending on the size and mass ratio of the sand. The smaller the size or higher the mixing ratio of sand or the higher the water contents, the higher the thermal conductivity on the surface of backfill block. The higher compressing pressure induce higher thermal conductivity. Meanwhile, the feasibility study of backfill block productivity was reviewed according to the variables of this study. The excessive sand ratio and water contents lead to poor quality that results in the failure of the block. In Korea, the research of backfill is only now in fundamental steps, thus the results of this study are expected to use for setup the experimental conditions of hydraulic and mechanical performance, and can be used for the design of safety function and evaluation of long-term stability for deep geological disposal system.
        5.
        2022.05 서비스 종료(열람 제한)
        Corrosion cells that simulates engineering barrier system have been stored in an aerobic KURT environment for 10 years, which were recovered and dismantled in 2021. The test specimens were compressed copper (Com. Cu), Cold spray copper (CSC Cu), Ti Gr.2, STS 304, and Cast nodular iron. The specimens were buffered by compact Ca-type Gyeongju bentonite (KJ-I) and compact Na-type Wyoming bentonite. And the corrosion cells were exposed to KURT groundwater at 30°C for about 10 years (3,675 days). As a result of the long-term experiment in aerobic environment, it was confirmed that Na-bentonite is more advantageous for inhibiting corrosion than Ca-bentonite. The corrosion thickness of the most specimens in Ca bentonite was slightly lower than in Na bentonite until the initial 500 days, but after 10 years, the corrosion thickness of copper and cast iron specimens in Na bentonite was clearly lower. The corrosion thickness of the copper specimen in Na bentonite was very low about 0.5 um in both Com. Cu and CSC Cu. Moreover, the corrosion thickness in Ca bentonite was very high about 4 um for Com. Cu and 6 um for CSC Cu. In the case of cast iron, the corrosion thickness in Na bentonite was about 13 um, and 15 um in Ca bentonite. The common feature of copper and cast iron specimens in Ca bentonite, which showed a high corrosion thickness, is the forming of a white mineral deposition layer on the specimen surface, which was presumed to be some kind of feldspar. On the other hand, it was found that the STS304 and Ti specimens were hardly corroded even after 10 years. In conclusion, when a white mineral deposition layer was formed on the specimen surface, the corrosion thickness always increased sharply than before, and thus it was estimated that the generation of the mineral deposition layer cause the increase of bentonite permeability, and rather the weakening of existing passive corrosion film.