When the parent radionuclide decays, the progeny radionuclide is produced. Accordingly, the dose contribution of the progeny radionuclide should be considered when assessing dose. For this purpose, European Commission (EC) and International Atomic Energy Agency (IAEA) provide weighting factors for dose coefficient. However, these weighting factors have a limitation that does not reflect the latest nuclide data. Therefore, in this study, we analyzed the EC and IAEA methodology for derivation of weighting factor and used the latest nuclide data from ICRP 107 to derive weighting factors for dose coefficient. Weighting factor calculation is carried out through 1) selection of nuclide, 2) setting of evaluation period, and 3) derivation based on ICRP 107 radionuclide data. Firstly, in order to derive the weighting factor, we need to select the radionuclides whose dose contribution should be considered. If the half-life of progeny radionuclides sufficiently short compared to the parent radionuclide to achieve radioactive equilibrium, or if the dose coefficient is greater of similar to that of the parent radionuclide and cannot be ignored, the dose contribution of the progeny radionuclide should be considered. In order not to underestimate the dose contribution of progeny radionuclides, the weighting factors for the progeny nuclides are taken as the maximum activity ratio that the respective progeny radionuclides will reach during a time span of 100 years. Finally, the weighting factor can be derived by considering the radioactivity ratio and branch fraction. In order to calculate the weighting factor, decay data such as the half-life of the radionuclide, decay chain, and branch fraction are required. In this study, radionuclide data from ICRP 107 was used. As a result of the evaluation, for most radionuclides, the weighting factors were derived similarly to the existing EC and IAEA weighting factors. However, for some nuclides, the weighting factors were significantly different from EC and IAEA. This is judged to be a difference in the half-life and branch fraction of the radionuclide. For example, in the case of 95Zr, the weighting factor for 95mNb showed a 35.8% difference between this study and previous study. For ICRP 38, when 95Zr decays, the branch fraction for 95mNb is 6.98×10-3. In contrast, for ICRP 107, the branch fraction is 1.08×10-2, a difference of 54.7%. Therefore, the weighting factor for the dose coefficient based on ICRP 107 data may differ from existing studies depending on the half-life and decay information of the nuclide. This suggests the need for a weighting factor based on the latest nuclide data. The results of this study can be used as a basis for the consideration of dose contributions for progeny radionuclides in various dose assessments.
The demand for transportation is increasing due to the continuous generation of radioactive wastes. Especially, considering the geographical characteristics of Korea and the location characteristics of nuclear facilities, the demand for maritime transportation is expected to increase. If a sinking accident happens during maritime transportation, radioactive materials can be released into the ocean from radioactive waste transportation containers. Radioactive materials can spread through the ocean currents and have radiological effects on humans. The effect on humans is proportional to the concentration of radioactive materials in the ocean compartment. In order to calculate the concentration of radioactive materials that constantly flow along the ocean current, it is necessary to divide the wide ocean into appropriate compartments and express the transfer processes of radioactive materials between the compartments. Accordingly, this study analyzed various ocean transfer evaluation methodologies of overseas maritime transportation risk codes. MARINRAD, POSEIDON, and LAMER codes were selected to analyze the maritime transfer evaluation methodology. MARINRAD divided the ocean into two types of compartments that water and sediment compartments. And it was assumed that radionuclides are transfered from water to water or from water to sediment. Advection, diffusion, and sedimentation were established as transfer process for radionuclides between compartments. MARINRAD use transfer parameters to evaluate transer processes by advection, diffusion, and sedimentation. Transfer parameters were affected by flow rate, sedimentation rate, sediment porosity, and etc. POSEIDON also divided the ocean into two types that water and sediment compartment, each compartments was detaily divided into three vertical sub-compartment. Advection, diffusion, resuspension, sedimentation, and bioturbation were established as transport processes for radionuclides between compartments. POSEIDON also used transfer parameters for evaluating advection, diffusion, resuspension, sedimentation, and bioturbation. Transfer parameters were affected by suspended sediment rates, sedimentation rates, vertical diffusion coefficients, bioturbation factors, porosity, and etc. LAMER only considered the water compartment. It divided the water compartment into vertical detailed compartments. Diffusion, advection and sedimentation were established as the nuclide transfer processes between the compartments. To evaluated the transfer processes of nuclides for diffusion and advection, LAMER calculated the probability with generating random position vectors for radionuclides’ locations rather than deterministic methods such as MARINRAD’s transfer parameters or POSEIDON’s transfer rates to evaluate transfer processes. The results of this study can be used as a basis for developing radioactive materials’ ocean transfer evaluation model.
As nuclear power plants are operated in Korea, low and intermediate-level radioactive wastes and spent nuclear fuels are continuously generated. Due to the increase in the amount of radioactive waste generated, the demand for transportation of radioactive wastes in Korea is increasing. This can have radiological effect for public and worker, risk assessment for radioactive waste transportation should be preceded. Especially, if the radionuclides release in the ocean because of ship sinking accident, it can cause internal exposure by ingestion of aquatic foods. Thus, it is necessary to analyze process of internal exposure due to ingestion. The object of this study is to analyze internal exposure by ingestion of aquatic foods. In this study, we analyzed the process and the evaluation methodology of internal exposure caused by aquatic foods ingestion in MARINRAD, a risk assessment code for marine transport sinking accidents developed by the Sandia National Laboratory (SNL). To calculate the ingestion internal exposure dose, the ingestion concentrations of radionuclides caused by the food chain are calculated first. For this purpose, MARINRAD divide the food chain into three stages; prey, primary predator, and secondary predator. Marine species in each food chain are not specific but general to accommodate a wide variety of global consumer groups. The ingestion concentrations of radionuclides are expressed as an ingestion concentration factors. In the case of prey, the ingestion concentration factors apply the value derived from biological experiments. The predator's ingestion concentration factors are calculated by considering factors such as fraction of nuclide absorbed in gut, ingestion rate, etc. When calculating the ingestion internal exposure dose, the previously calculated ingestion concentration factor, consumption of aquatic food, and dose conversion factor for ingestion are considered. MARINRAD assume that humans consume all marine species presented in the food chain. Marine species consumption is assumed approximate and conservative values for generality. In the internal exposure evaluation by aquatic foods ingestion in this study, the ingestion concetration factor considering the food chain, the fraction of nuclide absorbed in predator’s gut, ingestion rate of predator, etc. were considered as influencing factors. In order to evaluate the risk of maritime transportation reflecting domestic characteristics, factors such as domestic food chains and ingestion rate should be considered. The result of this study can be used as basis for risk assessment for maritime transportation in Korea.
In Korea, the construction of dry storage facilities for spent nuclear fuel is being promoted through the 2nd basic plan for high-level radioactive waste management. When operating dry storage facilities, exposure dose assessment for workers should be performed, and for this, exposure scenarios based on work procedures should be derived prior. However, the dry storage method has not yet been sufficiently established in Korea, so the work procedure has not been established. Therefore, research is needed to apply it domestically based on the analysis of spent nuclear fuel management methods in major overseas leading countries. In this study, the procedure for receiving and storing spent nuclear fuel in a concrete overpack-based storage facility was analyzed. Among the various spent nuclear fuel management systems, the metal overpack-based HI-STAR 100 system and the concrete overpackbased HI-STORM 100 system are quite common methods in the United States. Therefore, in this study, work procedures were analyzed based on each final safety analysis report. First, the HI-STAR 100 overpack enters the facility and is placed in the transfer area. Remove the impact limiter of the overpack and install the alignment device on the top of the overpack. Place the HI-TRAC, an on-site transfer device, on top of the alignment unit and remove the lids of the two devices to insert the canister into the HI-TRAC. When the canister transfer is complete, reseat the lid to seal it, and disconnect the HI-TRAC from the HI-STAR 100. Raise the canister-loaded HI-TRAC over the alignment device on the top of the HI-STORM 100 overpack and remove the lids of the two devices that are in contact. Insert the canister into the HI-STORM 100 and reseat the lid. The HI-STORM 100 loaded with spent nuclear fuel is transferred to the designated storage area. In this study, the procedure for receiving and storing spent nuclear fuel in a concrete overpack-based storage facility was analyzed. The main procedure was the transfer of canisters between overpacks, and it was confirmed that HI-TRAC was used in the work procedure. The results of this study can be used as basic data for evaluating the exposure dose of operating workers for the construction of dry storage facilities in Korea.
Currently, low and intermediate-level radioactive wastes and spent nuclear fuels are continuously generated in Korea. For the disposal of the radioactive wastes, the transport demand is expected to increase. Prior to transportation, it is necessary to evaluate the radiation risk of transportation to confirm that is not high. In Korea, there is no transportation risk assessment code that reflects domestic characteristics. Therefore, foreign assessment codes are used. In this study, before developing the overland transportation risk assessment code that reflects domestic characteristics, we analyzed the radiation risk assessment methodology in transportation accident codes developed in other countries. RADTRAN and RISKIND codes were selected as representative overland transportation risk assessment codes. For the two codes we analyzed accident scenarios, exposure pathways, and atmospheric diffusion. In RADTRAN, the user classifies accident severity for possible accident scenarios, and the user inputs the probability for each accident severity. On the other hand, in the case of RISKIND, the accident scenarios are classified and the probabilities are determined according to the NRC modal study (LLNL, 1987) in consideration of the cask impact velocity, cask impact angle, and fire temperature. In the case of RISKIND, the accident scenarios are applied only to transportation of spent nuclear fuel, and cannot be defined for low and intermediate-level radioactive waste. However, in the case of RADTRAN, since the severity and probability of accidents are defined by user, it can be applied to low and intermediate-level radioactive wastes. As the exposure pathways considered in transportation accident, both RADTRAN and RISKIND consider external exposure (cloudshine and groundshine), and internal exposure (inhalation, resuspension inhalation and ingestion). In the case of RADTRAN, additionally, external exposure due to loss of shielding (LOS) is considered. Atmospheric diffusion calculation is essential to determine the extent to which radioactive materials are diffused. In both RADTRAN and RISKIND, atmospheric diffusion calculations are based on Gaussian diffusion model. Users must input Pasquill stability class, release height, heat release, wind speed, temperature and mixing height, etc. Additionally, RADTRAN can input weather information relatively simply by inputting only the Pasquill stability class fraction and selecting the US average weather option. This study results will be used as a basis for developing radioactive waste overland transportation risk assessment code that reflects domestic characteristics.
RADTRAN is a code that assesses the radiation risk of radioactive material transportation. RADTRAN assumes that the package is a point source or a line source regardless of package type and corrects the external dose rate using a shape factor which depends on the critical dimension of the package. However, the external dose rate calculated using a shape factor may be different from the actual external dose rate. Therefore, it is necessary to analyze the effect of the shape factor on the external dose rate. In this study, the effect of the shape factor on the external dose rate in RADTRAN was analyzed by comparison with MCNP. This study analyzed change in external dose rate depending on the distance from the package and the critical dimension. The distance from the package was in the range of 1–800 m. The shape of the package was assumed to be cylindrical with a radius of 1 m, and the critical dimensions of the package were assumed to be 2, 4, and 8 m. Attenuation and build-up in the air were not considered to consider only the effect on the shape factor. When simulating the exposure situation using MCNP, the package was assumed to be a volume source, and flux by distance from the package was calculated using F5 tally. The dose rate at 1 m from the package was normalized to 2 mSv·hr−1. As a result of the analysis, the external dose rates of the package were higher in RADTRAN than in MCNP. For the critical dimension of 2, 4, and 8 m, when the distance from package is 1–10 m, the RADTRAN was 1.83, 4.08, and 5.27 times higher on average than MCNP, respectively. And when the distance from the package was 10–100 m and 100–800 m, RADTRAN was 1.10, 2.02, 3.01 times and 1.04, 1.92, 2.43 times higher than MCNP, respectively. It was found that the larger the distance from the package is and the smaller the critical dimension of the package is, the less conservatively RADTRAN assessed. It is because the shape of the package gets closer to the point source as the distance from the package increases, and the shape factor decreases as the critical dimension of the package decreases. The result of this study can be used as the basis for radiation risk assessment when transporting radioactive materials.