검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Limitations of shoulder range of motion (ROM), particularly shoulder internal rotation (SIR), are commonly associated with musculoskeletal disorders in both the general population and athletes. The limitation can result in connective tissue lesions such as superior labrum tears and symptoms such as rotator cuff tears and shoulder impingement syndrome. Maintaining the center of rotation of the glenohumeral joint during SIR can be challenging due to the compensatory scapulothoracic movement and anterior displacement of the humeral head. Therefore, observing the path of the instantaneous center of rotation (PICR) using the olecranon as a marker during SIR may provide valuable insights into understanding the dynamics of the shoulder joint. Objects: The aim of the study was to compare the displacement of the olecranon to measure the rotation control of the humeral head during SIR in individuals with and without restricted SIR ROM. Methods: Twenty-four participants with and without restricted SIR ROM participated in this study. The displacement of olecranon was measured during the shoulder internal rotation control test (SIRCT) using a Kinovea (ver. 0.8.15, Kinovea), the 2-dimensional marker tracking analysis system. An independent t-test was used to compare the horizontal and vertical displacement of the olecranon marker between individuals with and without restricted SIR ROM. The statistical significance was set at p < 0.05. Results: Vertical displacement of the olecranon was significantly greater in the restricted SIR group than in the control group (p < 0.05). However, no significant difference was observed in the horizontal displacement of the olecranon (p > 0.05). Conclusion: The findings of this study indicated that individuals with restricted SIR ROM had significantly greater vertical displacement of the olecranon. The results suggest that the limitation of SIR ROM may lead to difficulty in rotation control of the humeral head.
        4,000원
        3.
        2017.10 구독 인증기관·개인회원 무료
        Although Agaricus bisporus mushroom is a popular mushroom consumed world-widely, the application of common bio-elements to verify its geographical origin remains highly limited. Therefore, this study aimed to verify whether the six cultivation regions in Korea of A. bisporus could be determined by the stable isotope composition analysis of bio-elements, which are unique and abundant in most living creatures. δ13C, δ15N, δ18O, and δ34S in A. bisporus were influenced by the region, cultivar, and the interactions between these two factors (P < 0.05). In particular, the effect of cultivation region was more significant to the isotope ratio profiles as compared to the mushroom cultivar effect. During the cultivation period of A. bisporus, the C, N, O, and S isotopic fractionation was observed between the mushroom and cultivation medium, note higher in the mushroom (P < 0.05). Two dimensional plot of δ15N, δ18O, or δ34S effectively distinguished the cultivation regions, Nonsan, Buyeo, Boryung, Daegu, and/or Gyeongju examined in this study. Further, these isotope ratio profiles measured in this study would be statistically analyzed with various chemometrics to provide isotope markers for the authenticity of geographical origin. Our preliminary case study improves our understanding of how the isotope composition of A. bisporus varies with respect to cultivation regions and cultivars. In conclusion, the analysis of stable isotope ratios is a suitable potential tool for discrimination between the cultivation origins of A. bisporus collected from Korea, with potential application to other countries after certain validation steps required.
        5.
        2018.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Continuous outbreaks of Shigella spp. have raised concerns about the lack of rapid and on-site applicable biosensor method for Shigella detection. Since a bacteriophage has recently been employed as an emerging bio-recognition element in biosensor method, Shigella sonnei-specific bacteriophage was isolated and purified from a slaughterhouse with the final concentration of 2.0×1012 PFU/mL in this study. Analysis of purified S. sonnei-specific bacteriophage using transmission electron microscopy indicated that it possessed an icosahedral head with a relatively long non-contractile tail. It was therefore classified as a member of the Siphoviridae family. Head width, head length, and tail length were 69.9±11.2 nm, 77.5±8.8 nm, and 264.4±33.9 nm, respectively. The genomic DNA size of the S. sonnei-specific bacteriophage was determined to be approximately 25 kb by using 0.4% agarose gel electrophoresis. In specificity test with 43 food-associated microorganisms, the S. sonnei-specific bacteriophage exhibited a clear plaque against S. sonnei only. In addition, the S. sonnei-specific bacteriophage was stable within a wide range of pH values (pH 3-11) and temperatures (4-37 ). Thus, the present study demonstrated the excellent specificity and stability of the S. sonnei-specific bacteriophage as a novel bio-recognition element for S. sonnei detection in foods.
        6.
        2012.12 KCI 등재 서비스 종료(열람 제한)
        Carotenoids of squash play an important role in human health by acting as sources of provitamin A or as protective antioxidants. Among the 60 accessions of squash germplasm, fluorescent yellow and yellow types of flesh color got the highest count, followed by the orange, whitish yellow and greenish yellow. The redness and yellowness values of the flesh powder ranged from -2.45 to 86.09 and from 13.77 to 39.80, respectively. While the lightness and the total color difference values of flesh color varied from 67.64 to 86.09 and from 19.77 to 51.79, respectively. Colorimetric values of redness and yellowness showed positive correlation, and the correlation coefficient (r) was as high as 0.7386. The five accessions represented each flesh color types, IT195043 (orange), IT136696 (fluorescent yellow), IT186365 (yellow), IT137963 (whitish yellow), and IT180449 (greenish yellow). The total amount of carotenoid contents was in the order of orange color (104.64 mg/100 g), greenish yellow color (70.82 mg/100 g), fluorescent yellow color (32.41 mg/100 g), yellow color (8.73 mg/100 g), and whitish yellow color (4.73 mg/ 100 g). Both lutein and β-carotene were the predominant pigments of carotenoids, and lycopene was only separated and identified in the orange color flesh. According to the results, colorimetric analysis can aid breeders interested in increasing carotenoid content in squash, which could be accurately measured using a simple, reliable, and cost- and labor-efficient method for the evaluation of carotenoid pigments.