The establishment of porcine embryonic stem cells (ESCs) from porcine somatic cell nuclear transfer (SCNT) blastocysts is influenced by in vitro culture day of porcine reconstructed embryo and feeder cell type. Therefore, the objective of the present study was to determine the optimal in vitro culture period for reconstructed porcine SCNT embryos and mouse embryonic fibroblast (MEF) feeder cell type for enhancing colony formation efficiency from the inner cell mass (ICM) of porcine SCNT blastocysts and their outgrowth. As the results, porcine SCNT blastocysts produced through in vitro culture of the reconstructed embryos for 8 days showed significantly increased efficiency in the formation of colonies, compared to those for 7 days. Moreover, MEF feeder cells derived from outbred ICR mice showed numerically the highest efficiency of colony formation in blastocysts produced through in vitro culture of porcine SCNT embryos for 8 days and porcine ESCs with typical ESC morphology were maintained more successfully over Passage 2 on outbred ICR mice-derived MEF feeder cells than on MEF feeder cells derived from inbred C57BL/6 and hybrid B6CBAF1 mice. Overall, the harmonization of porcine SCNT blastocysts produced through in vitro culture of the reconstructed embryos for 8 days and MEF feeder cells derived from outbred ICR mice will greatly contribute to the successful establishment of ESCs derived from porcine SCNT blastocysts.
Although somatic cell nuclear transfer (SCNT)-derived embryonic stem cells (ESCs) in pigs have great potential, their use is limited because the establishment efficiency of ESCs is extremely low. Accordingly, we tried to develop in-vitro culture system stimulating production of SCNT blastocysts with high performance in the colony formation and formation of colonies derived from SCNT blastocysts for enhancing production efficiency of porcine ESCs. For these, SCNT blastocysts produced in various types of embryo culture medium were cultured in different ESC culture medium and optimal culture medium was determined by comparing colony formation efficiency. As the results, ICM of porcine SCNT blastocysts produced through sequential culture of porcine SCNT embryos in the modified porcine zygote medium (PZM)-5 and the PZM-5F showed the best formation efficiency of colonies in α-MEM-based medium. In conclusion, appropriate combination of the embryo culture medium and ESC culture medium will greatly contribute to successful establishment of ESCs derived from SCNT embryos.
To date, there are no protocols optimized to the effective separation of spermatogonial stem cells (SSCs) from testicular cells derived from mouse testes, thus hindering studies based on mouse SSCs. In this study, we aimed to determine the most efficient purification method for the isolation of SSCs from mouse testes among previously described techniques. Isolation of SSCs from testicular cells derived from mouse testes was conducted using four different techniques: differential plating (DP), magnetic-activated cell sorting (MACS) post-DP, MACS, and positive and negative selection double MACS. DP was performed for 1, 2, 4, 8, or 16 h, and MACS was performed using EpCAM (MACSEpCAM), Thy1 (MACSThy1), or GFR α1 (MACSGFRα1) antibodies. The purification efficiency of each method was analyzed by measuring the percentage of cells that stained positively for alkaline phosphatase. DP for 8 h, MACSThy1 post-DP for 8 h, MACSGFRα1, positive selection double MACSGFRα1/EpCAM, and negative selection double MACSGFRα1/α-SMA were identified as the optimal protocols for isolation of SSCs from mouse testicular cells. Comparison of the purification efficiencies of the optimized isolation protocols showed that, numerically, the highest purification efficiency was obtained using MACSGFRα1. Overall, our results indicate that MACSGFRα1 is an appropriate purification technique for the isolation of SSCs from mouse testicular cells.
Mesenchymal stem cells (MSCs) have been considered an alternative source of neuronal lineage cells, which are difficult to isolate from brain and expand in vitro. Previous studies have reported that MSCs expressing Nestin (Nestin+ MSCs), a neuronal stem/progenitor cell marker, exhibit increased transcriptional levels of neural development-related genes, indicating that Nestin+ MSCs may exert potential with neurogenic differentiation. Accordingly, we investigated the effects of the presence of Nestin+ MSCs in bone-marrow-derived primary cells (BMPCs) on enhanced neurogenic differentiation of BMPCs by identifying the presence of Nestin+ MSCs in uncultured and cultured BMPCs. The percentage of Nestin+ MSCs in BMPCs was measured per passage by double staining with Nestin and CD90, an MSC marker. The efficiency of neurogenic differentiation was compared among passages, revealing the highest and lowest yields of Nestin+ MSCs. The presence of Nestin+ MSCs was identified in BMPCs before in vitro culture, and the highest and lowest percentages of Nestin+ MSCs in BMPCs was observed at the third (P3) and fifth passages (P5). Moreover, significantly the higher efficiency of differentiation into neurons, oligodendrocyte precursor cells and astrocytes was detected in BMPCs at P3, compared with P5. In conclusion, these results demonstrate that neurogenic differentiation can be enhanced by increasing the proportion of Nestin+ MSCs in cultured BMPCs.