토마토뿔나방(Phthorimaea absoluta)은 현재 전 세계 토마토 재배에 심각한 문제를 초래하는 해충이며 국내에서는 2023년에 처음 발견된 이후. 전국적으로 퍼져 국내 토마토 재배 농가에 많은 경제적 손실을 입히고 있다. 특히 친환경 토마토 재배 농가에 대한 피해가 크게 발생하였지만 친환경 방제 방법이 부족한 상황이다. 북아프리카와 유럽에서는 토마토뿔나방의 포식성 천적인 담배장님노린재 (Nesidiocoris tenuis)를 상업적으로 이용하고 있으며, 스페인에서 알벌류(Tricogrammatidae)를 토마토뿔 나방 방제에 활용하는 등 친환경 방제수단으로써 천적을 활용하고 있다. 국외에서의 천적을 이용한 토마토뿔나방 방제 사례를 수집하여 기존 국내 천적의 활용성을 검증하고 이를 토대로 국내 토착 천적의 탐색 및 효과 검증을 통한 종합적인 천적 활용 친환경 방제 전략 수립에 이용하고자 한다.
This study evaluates the long-term performance of a multi-layer cover system (MLCS) for near-surface disposal facilities using numerical modeling to estimate infiltration rates under various rainfall scenarios. An effective cover system is essential to prevent radionuclide migration and protect groundwater inflow within disposal facility. The analysis incorporated different bedrock characteristics (homogeneous and discrete fracture networks) and rainfall patterns throughout a 300-year post-closure period, assuming constant initial hydraulic properties. A comprehensive modeling approach incorporating both saturated and unsaturated flow dynamics was employed to assess system performance. Results showed that the cover system effectively limited infiltration rates to 15.94%−21.25% of the design criterion (32 mm∙year−1) across all scenarios. Although infiltration patterns showed minimal sensitivity to bedrock heterogeneity, preferential flow along fractures was observed in the unsaturated zone, necessitating further investigation. These findings emphasize the importance of considering fracture-dominated flow in cover system design and highlight the need for detailed analysis of chemical degradation effects, experimental validation, and uncertainty quantification. The study provides valuable insights for optimizing disposal facility designs and improving long-term performance assessment methodologies.
This study involved the heterogenization of a binder pitch (BP) using a small amount of nanocarbon to improve physical properties of the resulting graphite electrode (GE). Heterogenization was carried out by adding 0.5–2.0 wt.% platelet carbon nanofiber (PCNF) or carbon black (CB) to a commercial BP. To evaluate the physical properties of the BPs, we designed a new model graphite electrode (MGE) using needle coke as a filler. The heterogenized binder pitch (HBP) with PCNF or CB clearly increased the coking value by 5–13 wt.% compared to that of the as-received BP. Especially, the model graphite electrodes prepared with HBPs containing 1.0 wt.% PCNF or CB showed significantly improved physical properties compared to the control MGE from the as-received BP. Although the model graphite electrodes prepared with HBPs showed similar properties, they had smaller pore sizes than the control. This indicates that heterogenization of the BP can effectively decrease the pore size in the MGE matrix. Correlating the average pore sizes with the physical properties of the model graphite electrodes showed that, for the same porosity, matrices formed by the HBP with a smaller average pore size can effectively improve the apparent density, tensile strength, and oxidation resistance of the model graphite electrodes.
Mesocrystals are macroscopic structures formed by the assembly of nanoparticles that possess distinct surface structures and collective properties when compared to traditional crystalline materials. Various growth mechanisms and their unique features have promise as material design tools for diverse potential applications. This paper presents a straightforward method for metal–organic coordination-based mesocrystals using nickel ions and terephthalic acid. The coordinative compound between Ni2+ and terephthalic acid drives the particle-mediated growth mechanism, resulting in the mesocrystal formation through a mesoscale assembly. Subsequent carbonization converts mesocrystals to multidirectional interconnected graphite nanospheres along the macroscopic framework while preserving the original structure of the Ni-terephthalic acid mesocrystal. Comprehensive investigations demonstrate that multi-oriented edge sites and high crystallinity with larger interlayer spacing facilitate lithium ion transport and continuous intercalation. The resulting graphitic superparticle electrodes show superior rate capability (128.6 mAh g− 1 at 5 A g− 1) and stable cycle stability (0.052% of capacity decay per cycle), certifying it as an advanced anode material for lithium-ion batteries.
The present study, black soldier flies (Hermetia illucens) fermented using lactic acid bacteria were powdered without defatting and added to 3% or 5% to make pig feed. Weaning piglets were fed 3% (T3) or 5% (T5) feed powdered with Hermetia illucens for 5 months and the efficacy of the feed was investigated. The results of measuring body weight gain over 5 months after adding 3% (T3) or 5% (T5) of Hermetia illucens powder to the feed of weaned piglets showed significant weight gain in the T5 group compared to the control group. The added feed to Hermetia illucens powder did not show toxicity, and analysis of its effect on blood properties showed that white blood cell levels tended to increase in the T3 or T5 group compared to the control group.The only increase in white blood cell count was a change within the normal range. As a result of analyzing the effect of the level of addition of Hermetia illucens powder on feces, the effect of liquid reduction showed excellent results in the T3 treatment group and maintained the best form of feces. In this study, the thawing loss in the control group was 6.66%, and the T3 group with added powder to Hermetia illucens showed a significant decrease of 5.03%, and the T5 group also showed a decrease of 5.61%. Therefore, it was demonstrated that additive feed for Hermetia illucens reduced thawing loss, affected the water holding capacity of meat, and played an important role in maintaining the taste of meat. Moreover, the results of carcass grade showed a tendency for one grade to increase in the T3 and T5 groups fed additive feed to Hermetia illucens compared to the control group. In conclusion, the results of this study suggest that feed supplemented with Hermetia illucens is effective in influencing the weight gain of pigs, reducing the liquid content of feces, and increasing carcass grade.
자생 부추속 식물 중 강부추(Allium thunbergii for. rheophytum ined.)와 갯부추(A. pseudojaponicum Makino)는 관상용, 식 용 및 약용자원으로 가치가 있으나 육묘를 위한 생육환경조건 구명이 미비하여 연구할 필요성이 있다. 본 연구는 강부추와 갯부추의 육묘에 미치는 플러그 셀 크기, 차광률, 시비처리에 따른 영향을 구명하기 위하여 실험을 수행하였다. 강부추와 갯부추를 육묘한 결과, 플러그 셀 크기에서는 50, 72, 105, 128, 162, 200셀 처리 중 용적이 가장 큰 50셀에서 초장, 엽 수, 근수, 그리고 근장의 생육이 우수하였다. 그러나 생산비용 과 플러그 육묘의 효율성을 고려하여 105셀 이상의 플러그 트레이 중에서 선택하여 육묘하는 것이 효과적이라 판단된다. 차광률에 따른 유묘는 0, 30, 60, 90% 처리 중 30~60% 차 광처리에서 초장, 근수, 그리고 근장이 유의적으로 높게 측정 되어 생육이 양호하였다. 시비처리에서 생중량과 건중량을 제 외한 생육지표를 검토했을 때, 강부추의 적정 시비처리는 속 효성 고형비료(DO-PRO) 0.1g, 갯부추는 속효성 액체비료 (Peters) 주 1회 8mL 엽면시비처리였고 두 종 모두 속효성 시비처리가 효과적이었다. 강부추와 갯부추의 초기 생육에는 30~60% 차광처리가 된 재배플롯에서 원예상토가 충진된 128셀 플러그 트레이에 종자를 파종한후, DO-PRO 0.1g 또 는 Peters 8mL를 주 1회 엽면시비하면서 재배하는 것이 효 과적이라 판단된다.
Mesophase pitch is a unique graphitizable material that has been used as an important precursor for highly graphitic carbon materials. In the current study, we propose to consider a spinnable mesophase pitch as a lyotropic liquid crystalline solution composed of solvent components and liquid crystalline components, so-called mesogen or mesogenic components. Among mesophase pitches, the supermesophase pitch is defined as a mesohpase pitch with 100% anisotropy, and can only be observed in pitches with a proportion of mesogenic components exceeding the threshold concentration (TC). We also examined the critical limit of AR synthetic pitch and 5 experimental spinnable mesophase pitches (SMPs). Then, we examined the effect of the solvent component on the minimum required amount of mesogenic component using a selected solvent component instead of their own solvent components. AR pitch showed 100% anisotropy with the least amount of its mesogenic component, THF insoluble components, of 60 wt.%. The solvent component, THF soluble components, extracted from AR-pitch, which has a molecular weight pattern similar to that of the original material but more amount of naphthenic alkyl chains, showed better solvent functionality than those of other THF solubles (THFSs) from other as-prepared spinnable mesophase pitches. This is why a lower amount of AR THFS can produce a supermesophase pitch when combined with the THFI (mesogenic components) of other experimental mesophase pitches. As a result of the current analysis, we define the mesogens as molecules that not only readily stack, but also maintain stacking structures in a fused state in the solution. The solvent component, on the other hand, is defined as molecules with a structure that readily decomposes in a fused state in the solution.
We report the result of a high-resolution spectroscopic study on seven magnesium (Mg) enhanced stars. The high Mg abundances in these stars imply that they were born in an environment heavily affected by the nucleosynthesis products of massive stars. We measure abundances of 16 elements including Mg and they show various abundance patterns implying their diverse origin. Three of our program stars show a very high Mg to Si ratio ([Mg/Si] ≈ 0.18–0.25), which might be well explained by fall-back supernovae or by supernovae with rapid rotating progenitors having an initial mass higher than about 20 𝑀⊙. Another three of our program stars have high light to heavy s-process element ratios ([Y/Ba] ≈ 0.30–0.44), which are consistent with the theoretical prediction of the nucleosynthesis in rapidly rotating massive stars with an initial mass of about 𝑀 = 40 𝑀⊙. We also report a star having both high Y ([Y/Fe] = 0.2) and Ba ([Ba/Fe] = 0.28) abundance ratios, and it also shows the highest Zn abundance ratio ([Zn/Fe] = 0.27) among our sample, implying the nucleosynthesis by asymmetric supernova explosion induced by very rapid rotation of a massive progenitor having an initial mass between 20 𝑀⊙ ≲ 𝑀 ≲ 40 𝑀⊙. A relative deficiency of odd-number elements, which would be a signature of the pair-instability nucleosynthesis, is not found in our sample.
Colorectal cancer causes the most cancer-associated death worldwide, having a high cancer incidence. Pectin is a complex polysaccharide present in various fruits, emerging as an anti-carcinogenic candidate. Although pectin has a suppressive capacity for colon carcinogenesis, the effect of reactive oxygen species (ROS) generation and colonic aberrant foci formation in the colon carcinogenesis mouse model remains unclear. Therefore, this study investigates the regulatory effect of pectin supplementation on colon carcinogenesis induced by azoxymethane (AOM) and dextran sodium sulfate (DSS) in mice. In an animal experiment, thirty male institute for cancer research (ICR) mice were divided into two experimental groups; AOM/DSS (control group) and AOM/DSS + pectin (5% in drinking water). Furthermore, the number of aberrant crypt foci (ACF) and aberrant crypt (AC) on colonic mucosa were counted, and thiobarbituric acid-reactive substances (TBARS) assay was performed to estimate lipid peroxidation in feces. Pectin treatment significantly decreased the number of ACF and AC per colon compared with the control. Additionally, fecal TBARS level in the pectin group was significantly lower than those in the control group. Conclusively, these findings indicate that pectin-inhibited hyperplastic alteration and oxidative stress suppress colitis-associated colon carcinogenesis.
In horse management, the alarm system with sensors in the foaling period enables the breeder can appropriately prepare the time of the parturition. It is important to prevent losses by unpredictable parturition because there are several high risks such as dystocia and the death of foals and mares during foaling. However, unlike analysis in the alarm system that detects specific motions has been widely performed, analysis of classification following specific behavior patterns or number needs to be more organized. Thus, the objective of this study is to classify signs of the specific behaviors of the mares for the prediction of pre-foaling behaviors. Five Thoroughbred mares (9-20 yrs) were randomly selected for observation of the prefoaling behaviors. The behaviors were monitored for 90 min that was divided into three different periods as 1) from -90 to -60 min, 2) from -60 to -30 min, 3) from -30 min to the time for the discharge of the amniotic fluid, respectively. The behaviors were divided into two different categories as state and frequent behaviors and each specific behavioral pattern for classification was individually described. In the state behaviors, the number of mares in the standing of the foaling group (3.17 ± 0.18b) at period 3 was significantly higher than the control group (1.67 ± 0.46a). In contrast, the number of the mares in the eating of the foaling group (1.17 ± 0.34b) at period 3 was significantly lower than the control group (3.33 ± 0.46a). In the frequent behaviors, the weaving of the foaling group was significantly higher than the control group, and looking at the belly of the foaling group was significantly lower than the control group. In period 2, defecation, weaving, and lowering the head of the foaling group were significantly higher than the control group, respectively. In period 3, sitting down and standing up, pawing, weaving, and lowering the head in the foaling group were also significantly higher than the control group. In conclusion, the behavior is significantly different in foaling periods, and the prediction of foaling may be feasible by the detection of the pre-foaling behaviors in the mares.