Most previous studies on dinoflagellates in Korean coastal areas were conducted without morphological descriptions and illustrations of the observed dinoflagellates. This indicates that the species and diversity of dinoflagellates may have been respectively misidentified and underestimated in the past, probably due to cell shrinkage, distortion and loss caused by sample fixation. This study provides information on the morphological observations of four dinoflagellate orders (Prorocentrales, Dinophysiales, Gonyaulacales and Gymnodiniales) from Jangmok Harbour in Jinhae Bay, Korea. The unfixed samples were collected weekly from December 2013 to February 2015. A total of 13 genera and 30 species were identified using light and scanning electron microscopy, although some samples were not clarified at the species level. Harmful dinoflagellates, Prorocentrum donghaiense, Tripos furca, Alexandrium affine, A. fundyense, Akashiwo sanguinea and Cochlodinium polykrikoides, were identified based on the morphological observations. The results also reflect the occurrence and identification of dinoflagellates that had not been previously recorded in Jangmok Harbour.
This study was conducted to compare the volatile flavor compounds of Artemisia annua L. after extraction by simultaneous steam distillation extraction (SDE) and solid-phase micro extraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS) analysis. Via SDE and SPME processes, 79 (1,254.00 mg/kg) and 39 (488.74 mg/kg) compounds were identified respectively. The compounds extracted by SDE included 27 alcohols, 13 aldehydes, 22 hydrocarbons, 3 esters, 12 ketones, 1 oxide and 1 N-containing compound, on the other hand, using the SPME method, 7 alcohols, 5 aldehydes, 1 ester, 18 hydrocarbons, 7 ketones, and 1 oxide were extracted. The major volatile flavor compounds of Artemisia annua L. isolated by the two methods were caryophyllene oxide, -caryophyllene, camphor, -selinene, -muurolene, 1,8-cineol, (E)-pinocarveol and pinocarvone. β β γ The sesquiterpene named caryophyllene oxide was the most abundant volatile flavor compound with relative contents of 234.16 mg/kg and 195.44 mg/kg obtained by the SDE and SPME methods, respectively. Among the identified volatiles, sabinene, β-pinene, α-terpinene, γ-terpinene, yomogi alcohol, myrtenol, (Z)-nerolidol, p-cymen-8-ol and eugenol were detected by the SDE method only while (E)-anethole and α-cubebene were detected by the SPME method only. This study confirmed that the composition and contents of the volatile flavor compounds vary between different extraction methods. More volatile flavor compounds were identified using the SDE method than the SPME method.
DGCR8 is a RNA-binding protein working with DROSHA to produce pre-microRNA in the nucleus, while DICER does not only mature microRNA but also endogenous siRNAs in the cytoplasm. Here, we have produced Dgcr8 conditional knock-out mice using progesterone receptor (PR)-Cre (Dgcr8flox/flox; PRcre/+ mice, Dgcr8d/d) and demonstrated that canonical microRNAs dependent of DROSHA-DGCR8 complex are required for uterine development as well as female fertility in mice. Adult Dgcr8d/d females did not undergo regular reproductive cycle and produce any pups when housed with fertile males, whereas administration of exogenous gonadotropins induced normal ovulation with corpus luteal formation in these mice. Ovulated oocytes from Dgcr8d/d mice had comparable fertilization potentials and were normally developed to the blastocyst after fertilization as compared to those in control Dgcr8f/f mice. Interestingly, PR-Cre-dependent Dgcr8 deletion showed aberrant infiltration of acute inflammatory immune cells to female reproductive organs only when Dgcr8d/d mice were mated with male mice. With respect to uterine development, gross morphology, histology, and weight of Dgcr8d/d uterus were similar to those of control at 3-week-old age. However, multiple uterine abnormalities were noticeable at 4-week-old age when PR expression is significantly increased, and these deformities became severe onwards. Gland formation and myometrial layers were significantly reduced, and stromal cell compartment did not expand and became atrophic during uterine development in these mice. These results were consistent with aberrantly reduced cell proliferation in stromal cell compartments of Dgcr8d/d mice. Collectively, our results suggest that DGCR8 dependent-canonical microRNAs are essential for development and physiology of the uterus with respect to morphogenesis, proper immune modulation, reproductive cycle, and steroid hormone responsiveness in mice.
The Egr family of zinc finger transcription factors is rapidly induced by various mitogens and regulates cell growth, differentiation, and apoptosis. While it is clear that loss of Egr1 leads to anovulatory infertility due to LHβ deficiency in female mice, molecular function of Egr1 in male reproduction has not been clearly investigated. Here, we demonstrate that Egr1 acts as an intrinsic transcription factor in Leydig cells to regulate their proliferation and steroidogenesis in the testis as well as an extrinsic factor for male reproduction via LHβ transcription in the pituitary. Egr1 is predominantly expressed in spermatogonia and Leydig cells in immature testes and later detected in some of these cell types in mature testes. The fertility potential of Egr1(-/-) male mice is relatively deteriorated even at 2 month-old age and aggravated with aging. The incidence of abnormalities of seminiferous tubules such as Sertoli cell only was dramatically increased with aging. The number and mean size of Leydig cells were significantly reduced in Egr1(-/-) testes. The impairment of Leydig cells is consistent with significant reduction in levels of testosterone and expression of factors critical for steroidogenesis such as StAR in Egr1(-/-) testes. Exogenous administration of hCG rapidly and transiently induced Egr1 expression in Leydig cells culture in vitro. hCG could reinstate reduced mean size of Leydig cells but not reduced number of Leydig cells and aberrantly low StAR expression, suggesting that Egr1 has critical functions for Leydig cell proliferation and their steroidgenesis. In addition, daily sperm production and in vitro fertilization (IVF) competence were significantly reduced, and apoptosis was facilitated in these mice. Furthermore, hCG administration to compensate for relatively low LH levels in Egr1(-/-) males could not restore the compromised reproductive phenotypes such as IVF competence and apoptosis in these mice. Interestingly, expression of Egr2, a member of Egr family, is significantly elevated in Egr1(-/-) Leydig cells suggesting that genetic compensation of Egr2 may alleviate phenotypic aberration of Egr1(-/-) male testes. Collectively, these results suggest that Egr1 act as an intrinsic transcription factor required for proliferation and steroidogenesis of Leydig cells to govern spermatogenesis in the testis.
DGCR8 is a RNA-binding protein working with DROSHA involved in critical processes for microRNA production in the nucleus. To understand function of miRNAs in the uterus, we have produced uterus-specific Dgcr8 conditional knock-out mice using two well-known Cre mouse models, anti-Mullerian hormone receptor 2 (Amhr2)-Cre and progesterone receptor (PR)-Cre. Dgcr8flox/flox;PRcre/+ mice were mainly analyzed and considered as uDgcr8 KO in this study unless otherwise indicated as Dgcr8flox/flox;Amhr2cre/+ mice. Morphological and histological analyses, embryo cultures, genomic DNA PCR, realtime RT-PCR and Western blotting were performed. uDgcr8 KO females bred with fertile males did not produce any offspring, suggesting that these mice are infertile. Vaginal smear analyses showed that these mice do not undergo estrous cycle, whereas Dgcr8flox/flox;Amhr2cre/+ mice exhibited regular estrous cyclicity. In vitro culture of 2-cell stage embryos and histological analyses for CL in uDgcr8 KO demonstrated that they can respond to gonadotrophins to ovulate healthy oocytes with comparable fertilization potentials as compared to those in Dgcr8flox/flox mice (Control). Gross morphology, histology, and weight of uteri of uDgcr8 KO mice were similar to those of control at 3-week-old stage. However, uterus become extremely thinner and shorter from 4-week-old stage onward. Histological examination showed significant reduction in gland numbers and stromal area from 4-week-old stage. Interestingly, this phenotype is reflected by significant increase of PR expression in the uteri of 4-week-old mice. In addition, stromal cell proliferation of uDgcr8 KO is severely impaired. BrdU incorporation experiments showed that while epithelial cells undergo proliferation by E2 treatment, stromal cells do not incorporate BrdU under the uterine conditions provided with E2+P4. Collectively, these results conclude that microRNAs are essential for uterine stromal cell proliferation in mice.
MicroRNAs (miRNAs) are single-stranded, small non-coding RNAs which are critical for gene regulatory networks by directing the translational repression or degradation of complementary target mRNAs. They can be divided into two subclasses: canonical and non-canonical miRNAs. Canonical miRNAs are produced from long primary transcripts by sequential complex events in which RNA III enzymes such as Drosha and Dicer and accessory factors such as DGCR8 and Argonautes work cooperatively. DGCR8 is a RNA-binding protein that assists Drosha to process canonical miRNAs in the nucleus. To understand function of canonical miRNAs in uterine physiology, we have characterized uterine phenotypes of uterine-specific DGCR8 knock-out mice (uDGCR8 KO, DGCR8flox/flox; PRcre/+), and hormonal regulation of expression profiles of major factors working for miRNA biogenesis in the uterus. Gross morphological and histological analyses, immunohistochemistry, PCR and realtime RT-PCR were performed. While DGCR8 and Drosha do not seem to be regulated by ovarian steroid hormones, expression of Dicer, Exportin 5 and Argonaute 2 was transiently increased by E2 but not by P4. Combination of E2+P4 did not have any additional effects on their expression profiles. Genomic DNA PCR analyses showed that while DGCR8 gene is not completely deleted in the uterus, DGCR8 is specifically deleted in the uterus where PR is strongly expressed. uDGCR8 KO females bred with fertile males did not produce any offspring, suggesting that these mice are infertile. Vaginal smear analyses provided evidence that these mice do not undergo estrous cycle. Whereas gross morphology and histological analyses of uteri of 3-week-old uDGCR8 KO mice is similar to that of DGCR8flox/flox mice (control), uteri of 5- and 8-week-old mice are extremely thinner and shorter than those of control mice. These results were supported by significant decrease in uterine weight/body weight of uDGCR8 KO mice at 5-week-old age onward. Interestingly, this phenotype is reflected by significant increase of PR expression in the uteri of 4-week-old mice. Expression of DGCR8 and Dicer is significantly increased after birth. BrdU incorporation experiments showed that cell proliferation governed by ovarian steroid hormones does not normally occur in these mutant mice. Furthermore, artificial decidualization does not occur in these mice. Collectively, these results conclude that canonical miRNAs plays critical roles in normal uterine development and steroid hormone-dependent uterine function.
Kwanganbyeo is a japonica rice variety developed from the cross between Namyang 7 and SR14779-HB234-31, anelite line derived from the cross between Cheonmabyeo and Aichi 37 at the National Crop Experiment Station, RDA, and washi-tecture and light-dark gre