Nutritious and functional foods from crop have received great attention in recent years. Colored-grain wheat contains high phenolic compound and a large number of flavonoid. One of plant pigments, wheat anthocyanin is increasingly emerging as natural compounds for consumer´s health and condition. Red grains and white grains with different antioxidant activity was used to conduct germination assay. Antioxidant enzyme assay of POD, APX, CAT, GST, GR and GPx was conducted during the imbibitional phase of mature seeds. Malondialdehyde (MDA) content was analyzed to assess the activity of ROS during imbibition phase of mature seeds and alpha-amylase contents were quantified for 3 days during dark imbibition. Additionally, sprouting rates of developing seeds in spikelet after anthesis with damp condition were measured in each red grain groups for two weeks to evaluate sprout ability affected by phytochemical of red grain wheat. In summary, we identified that red grain wheat showed higher antioxidant enzyme activity involved in ROS scavenging during imbibition. Sprouting rate during dark imbibition in developmental spikelet of four groups classified by color suggest that phytochemicals in dark red grain wheat caused negative effects to sprouting.
Phytochemical in purple percarp of wheat seed consist of high phenolic content including ferulic acid, caffeic acid, vanilic acid and anthocyanins which not only perform as source of distinctive red to purple pigmentation but also high antioxidative material. Previous work has demonstrated that certain pigmentation can be generally regarded as good dietary source of food supplement. Yet, its physiological function in other various aspects has been not thoroughly understood. In this study, we organized fundamental experiment which could evaluate germinating ability of different-colored segregated wheat population. Total of five segregated lines were recognized by assist of CIELAB coordinates. After assessing initial content of total phenol, flavonoid, monomeric anthocyanin and ORAC assay for antioxidant activity from each population, germination assay was taken place in vitro. From germinating grains, sample was taken every 6 hours for measurement of alpha amylase enzyme activity. Discernible difference in chemical constituent was recognized among population along with disparity in ORAC assay. Alpha amylase activity and germination assay showed that darkening of pericarp was related to inhibition of germination. Pigmentation in wheat is important for its physiological role and commodity value which should be considered as critical factor to be integrated in breeding program
Soil salinity limits crop productivity in many regions. This problem would be more serious as the global climate changes and worldwide water shortages would accelerate soil salinization. This study is fulfilled with aim on resolve crop cultivation in dry/saline land as an international joint research project with Tunisia. Total 48 lines of wheat cultivars including 32 common wheat (16 Korean wheat, 16 Tunisian common wheat) and 16 Tunisian durum wheat were incorporated in this study. Salt stress was applied for 2 weeks by submerging the pots into 500 mM NaCl at 3-leaf stage followed by re-watering for restoration in greenhouse. Numerous agronomic/growth parameters were scored for tolerence. SSR primers that have been known to be related to salt tolerance were applied to explain selected population. The correlation between PCR-based length polymorphism of selected lines and their resistance were evaluated. The obtained information will aid selection for salt tolerance hexa/tetraploid wheats. Acknowledgement: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012K1A3A1A09028123) and carried out with the support of “Cooperative Research Program for Agriculture Science & Technology Development (Project title: Development of high yielding wheat with stress tolerance via molecular breeding strategies, Project No. PJ008031)”, Rural Development Administration, Republic of Korea.
Drought tolerance is the ability of a plant to live, grow, and reproduce properly with limited water supply or under periodic conditions of water deficit. However, the climate changes and worldwide water shortages would result in the loss of applied water to irrigated land, increasing soil water deficit. To control the situation, we have carried out the international joint research project for the aim of developing that drought tolerance common wheat and durum wheat in Korea and Tunisia. Total 79 (41 common wheat, 39 durum wheat) Tunisian lines and 33 Korean wheat cultivars were incorporated in this study. Drought stress was applied for 25 days of stopping irrigation from the 3-leaf stage followed by re-watering for restoration in greenhouse. We selected top 13 (5 Korean line, 8 Tunisian line) tolerant lines and 11 (5 Korean, 6 Tunisian) susceptible lines based on growth parameter analysis. Primers (Operon primers and wheat Dreb1 gene) that have been known to be related drought resistance were applied to explain selected population. The correlation between PCR-based length polymorphism of selected lines and their resistance were evaluated. The obtained primer information will aid selection for drought tolerance durum as well as hexaploid common wheat.
Mutant analysis is one of most optimized genome-wide approach towards acquiring utile phenotypes and defining related genes. Gamma-irradiation, an acknowledged way of mutant-generating method, was applied to gain sets of mutant line in Brachypodium distachyon. B. distachyon is a model plant, commonly used in genus of Gramineae for the research of structure genomics and functional genomics. B. distachyon contribute to rapid and easy analysis because of its small size and quick growth. Mutant population was generated by different doses of gamma-irradiation (0, 50, 100, 150, 200, 250 Gy) in the gamma field phytotron. Distance from the source gives same irradiation duration for each plant. Plant growth parameters such as plant height, tiller number, leaf length & width, internode number & diameter, maturity and yield components (ear number biomass) were scored on M0 plants. Plant responses to different doses of radiation are evaluated and the effective radiation dosages to generate mutant using gamma-phytotron are suggested. Chronic irradiation using gamma-phytotron is useful tool to generate mutants for genomic variations such as SNP or INDEL as well as suitable for functional study of genes in Gramineae.