This study reports the development of a new alfalfa (Medicago sativa L.) variety, ‘Alfaone’, at the Forage Production Systems Division, National Institute of Animal Science, Rural Development Administration, Korea, from 2015 to 2023. The variety originated from an artificial cross between Xun Lu (maternal parent) and RadarⅡ Brand (paternal parent), followed by pedigree selection and performance testing. The elite line ‘MsCB01’ was subsequently released as ‘Alfaone’. Regional adaptability trials were conducted for two years (2022–2023) across four representative sites in Korea (Cheonan, Pyeongchang, Jeongeup, and Jinju) to evaluate agronomic traits, forage yield, and quality. Evaluated characteristics included plant height, regrowth ability, winter survival, and lodging resistance. The average dry matter yield of ‘Alfaone’ was 20,811 kg/ha, approximately by about 3% higher than that of the standard cultivar ‘Vernal’ (20,236 kg/ha). Yield superiority was particularly evident in Pyeongchang, suggesting excellent cold tolerance and winter hardiness. Assessment of forage nutritive traits indicated that ‘Alfaone’ was comparable to ‘Vernal’, demonstrating that its yield advantage did not come at the expense of quality. Overall, ‘Alfaone’ is a promising cultivar that combines high productivity with strong adaptability to unfavorable environments, particularly cold-prone regions. Its release is expected to promote the expansion of alfalfa cultivation, enhance forage self-sufficiency, and reduce dependence on imported hay in Korea.
This study evaluated the growth characteristics, forage productivity, and feed value of three Italian ryegrass (Lolium multiflorum Lam.) cultivars ‘Earlybird’, ‘Green call’, and ‘Greenfarm2ho’ over two consecutive growing seasons. Growth traits such as cold tolerance, lodging resistance, disease resistance, and insect resistance were assessed, along with plant height. Forage yield was measured as both fresh and dry matter yields, and feed value was analyzed in terms of CP, NDF, ADF, DMI, DDM, RFV and CA content. Among the tested cultivars, ‘Earlybird’ demonstrated superior performance in several key traits. It showed the greatest lodging resistance and plant height, along with the highest fresh and dry matter yields, although differences in yield were not statistically significant. In terms of feed quality, ‘Earlybird’ had the highest CP (10.8%), lowest NDF (54.7%), and highest RFV (109), indicating excellent palatability and digestibility. ‘Greenfarm2ho’ showed intermediate values across all parameters, suggesting balanced productivity and quality. In contrast, ‘Green call’ showed relatively lower lodging resistance and feed value. Overall, ‘Earlybird’ was identified as a promising cultivar for forage production in temperate climates, combining stable yield performance with high nutritional value. These findings offer valuable guidance for cultivar selection in livestock forage systems aiming to improve both productivity and feed efficiency.
Aluminum nitride (AlN) provides excellent thermal conductivity and electrical insulation, making it suitable for semiconductor heater applications. However, its low surface emissivity can lead to thermal energy loss, reducing heater efficiency. To address this issue, black AlN - obtained by doping with carbon and other impurities to enhance the surface emissivity - has recently been applied in various fields. In this study, black AlN was fabricated by adding TiO2 to AlN, and its densification behavior and electrical properties were evaluated to assess the feasibility of its use as a heater material for semiconductor photolithography. The sinterability of black AlN was improved by optimizing the granulation and forming conditions, with a particular focus on the heat treatment parameters that affect material properties such as color. Consequently, a black AlN heater material with a sintered density of 3.33 g/cm3, thermal conductivity of 162.7 W/m・K, and thermal diffusivity of 64.22 mm2/s was fabricated by optimizing the processing variables.
This study was conducted from 2022 to 2024 at the Grassland and Forage Crops Division, National Institute of Animal Science (RDA), in Cheonan, Korea, to develop a medium-maturing variety of Italian ryegrass (Lolium multiflorum Lam.). The newly developed tetraploid cultivar, named ‘Spider’, is characterized by its green leaves, semi-erect growth habit in late autumn, and erect growth habit in mid-spring. With a heading date of May 16, ‘Spider’ is classified as a medium-maturing variety. Compared to the control cultivar ‘Kowinmaster’, ‘Spider’ has a 1.0 mm wider leaf blade, a 1.6 cm longer leaf blade, and is 5 cm taller in plant height. Its dry matter yield (10,169 kg/ha) is significantly higher than that of ‘Kowinmaster’ (p<0.05). The crude protein content of ‘Spider’ is 10.4%, which is 0.2% higher than that of the control. Additionally, ‘Spider’ has a neutral detergent fiber (NDF) content of 49.5% and an acid detergent fiber (ADF) content of 26.6%, showing a 2.2% lower NDF and a 0.2% higher ADF compared to ‘Kowinearly’.
The commercial feed additive, native rumen microbes (RC), derived from a diverse microbial community isolated from the rumen of Hanwoo steers is being explored to enhance rumen fermentation and improve ruminant feed utilization. This study evaluated the impact of native rumen microbes supplementation on methane emissions, microbial diversity, and fermentation efficiency on in vitro assessment. Treatments were as follows: CON (basal diet, without RC); T1 (basal diet + 0.1% RC); T2 (basal diet + 0.2% RC). Rumen fermentation parameters, total gas, and methane production were assessed at 12, 24, and 48 h of incubations. The in vitro gas production was carried out using the Ankom RF Gas Production System. Supplementation of RC significantly reduced the total gas production at 12, 24, and 48 hours of incubation (p < 0.05). Volatile fatty acid concentrations were increased, while acetate and propionate were decreased (p < 0.05) at 48 h by the supplementation of RC. Notably, the 0.1% inclusion level of RC significantly reduced methane production by 28.30% and 21.21% at 12 and 24 hours. Furthermore, microbial diversity analysis revealed significant shifts (p < 0.05) in bacterial composition between the control and treatment groups, while supplementation also promoted the growth of bacterial populations, such as Succiniclasticum. These findings suggest that native rumen microbes supplementation, particularly at 0.1% inclusion level, can enhance rumen microbial composition while significantly reducing methane production in vitro.
A new variety of Alfalfa (Medicago sativa L.), named 'Alfaking' was developed between 2015 and 2023 at the Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan, Republic of Korea. The variety was produced through artificial hybridization, with ‘Paravivo’ serving as the maternal line and ‘WL514’ as the paternal line. ‘Alfaking’ underwent field tests across four regions (Cheonan, Pyeongchang, Jeongeup, and Jinju) to evaluate its agronomic characteristics and forage production over two years (2022-2023). The dry matter yield of ‘Alfaking’ reached 22,516 kg/ha, which is 11% higher than the control variety, ‘Vernal.’ ‘Alfaking’ exhibited 2.1% higher crude protein content than ‘Vernal’ in forage nutritive value. The development of this new alfalfa variety, which exhibits excellent adaptability to challenging environmental conditions, is expected to enhance forage cultivation and productivity in Korea.