검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2023.11 구독 인증기관·개인회원 무료
        International Atomic Energy Agency defines the term “Poison” as a substance used to reduce reactivity, by virtue of its high neutron absorption cross-section, in IAEA glossary. Poison material is generally used in the reactor core, but it is also used in dry storage systems to maintain the subcriticality of spent fuel. Most neutron poison materials for dry storage systems are boron-based materials such as Al-B Carbide Cermet (e.g., Boral®), Al-B Carbide MMC (e.g., METAMIC), Borated Stainless Steel, Borated Al alloy. These materials help maintain subcriticality as a part of the basket. U.S.NRC report NUREG-2214 provides a general assessment of aging mechanisms that may impair the ability of SSCs of dry storage systems to perform their safety functions during longterm storage periods. Boron depletion is an aging mechanism of neutron poison evaluated in that report. Although that report concludes that boron depletion is not considered to be a credible aging mechanism, the report says analysis of boron depletion is needed in original design bases for providing long-term safety of DSS. Therefore, this study aimed to simulate the composition change of neutron poison material in the KORAD-21 system during cooling time considering spent fuel that can be stored. The neutron source term of spent fuel was calculated by ORIGEN-ARP. Using that source term, neutron transport calculation for counting neutrons that reach neutron poison material was carried out by MCNP®-6.2. Then, the composition change of neutron poison material by neutron-induced reaction was simulated by FISPACT-II. The boron-10 concentration change of neutron poison material was analyzed at the end. This study is expected to be the preliminary study for the aging analysis of neutron poison material about boron depletion.
        2.
        2023.05 구독 인증기관·개인회원 무료
        Spent nuclear fuel (SNF) characterization is important in terms of nuclear safety and safeguards. Regardless of whether SNF is waste or energy resource, the International Atomic Energy Agency (IAEA) Specific Safety Guide-15 states that the storage requirements of SNF comply with IAEA General Safety Requirement Part 5 (GSR Part 5) for predisposal management of radioactive waste. GSR Part 5 requires a classifying and characterizing of radioactive waste at various steps of predisposal management. Accordingly, SNF fuel should be stored/handled as accurately characterized in the storage stage before permanent disposal. Appropriate characterization methods must exist to meet the above requirements. The characterization of SNF is basically performed through destructive analysis/non-destructive analysis in addition to the calculation based on the reactor operation history. Burnup, Initial enrichment, and Cooling time (BIC) are the primary identification targets for SNF fuel characterization, and the analysis mainly uses the correlation identified between the BIC set and the other SNF characteristics (e.g., Burnup - neutron emission rate) for characterizing. So further identification of the correlation among SNF characteristics will be the basis for proposing a new analysis method. Therefore, we aimed to simulate a SNF assembly with varying burnup, initial enrichment, and cooling time, then correlate other SNF properties with BIC sets, and identify correlations available for SNF characterization. In this study, the ‘CE 16×16’ type assembly was simulated using the SCALEORIGAMI code by changing the BIC set, and decay heat, radiation emission characteristics, and nuclide inventory of the assembly were calculated. After that, it was analyzed how these characteristics change according to the change in the BIC set. This study is expected to be the basic data for proposing new method for characterizing the SNF assembly of PWR.
        3.
        2022.10 구독 인증기관·개인회원 무료
        As the amount of on-site Spent Nuclear Fuel (SNF) in storage increases due to the continued operation of Nuclear Power Plants (NPPs) in Korea, the on-site wet storage pool is expected to become saturated. Therefore, a facility for safely storing the spent nuclear fuel is required so that there is no problem with operation of the NPP until permanent disposal of SNF. Prior to the construction of such a facility, the safety analysis of the interim storage facility and verification of the safety of the spent fuel storage system (e.g. cask, silo) to be used are required according to Article 63 of the Nuclear Safety Act. In this process, analysis of the Structures, Systems, and Components (SSCs) of the storage system is needed. Based on the analysis, it is necessary to efficiently classify SSCs that are important to safety in order to differentiate management that more thoroughly manages those important to safety. In Korea, according to the notice of the Nuclear Safety and Security Commission, the components performing essential safety functions for the safe storage of spent fuel storage system are to be classified as “important safety equipment”. 10 CFR Part 72, a federal regulation related to interim storage facilities in the United States, also requires the identification of SSCs that fall under “Important to Safety (ITS)”, which is like domestic case. In addition, it has been confirmed that there are cases in which detailed classification according to Reg Guide 7.10 and NUREG-CR/6407 is added in Safety Analysis Report. However, these existing classification methods are not only classified as a single grade except for the method according to the Reg guide, but all are classified according to a qualitative standard. Qualitative criteria may cause ambiguity in judgment, resulting in subjective judgment of the person who proceeds in the classification process. Therefore, in this study, a new classification method is proposed to solve the problem according to the qualitative classification method. Assessing the level of radiological harm to the general public due to the assumption of failure of SSC in the spent fuel storage system is used as a quantitative evaluation standard.
        4.
        2016.04 구독 인증기관·개인회원 무료
        Acetylcholinesterase 1 (AmAChE1) has low catalytic activity and is abundantly expressed in both neuronal and non-neuronal tissues. In previous experiments, we observed that AmAChE1 is rarely expressed in summer while highly expressed in winter. Through additional experiments, the expression of AmAChE1 was suggested to be associated with brood rearing status. Under the assumption that abnormal suppression of brood rearing activity may result in stressful condition in honey bee social community, it was further suggested that AmAChE1 is likely involved in stress management particularly during winter. We hypothesized that the increased docility usually observed in overwintering bees is likely an outcome of stress management in colony, which is mediated by AmAChE1 expression. To verify this, worker bees expressing abundant AmAChE1 were collected in early winter and injected with Amace1 dsRNA to knockdown Amace1. Then, the behavioral activity of the bees was investigated using the EthoVison video tracking system. Honey bees injected with Amace1 dsRNA showed significantly increased motility, which was strongly correlated with the suppressed expression level of AmAChE1 in the abdomen. No apparent reduced expression of AmAChE1 in the head was observed perhaps due to the limited efficacy of RNA interference in the blood-brain-barrier. Our finding suggests that behavioral activity can be regulated, at least, by AmAChE1 expression level in non-neuronal tissue (i.e., fatbody) perhaps via metabolic alteration.