검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 43

        21.
        2015.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Interferometric Monitoring of Gamma–ray Bright Active galactic nuclei (iMOGABA) program provides not only simultaneous multifrequency observations of bright gamma–ray detected active galactic nuclei (AGN), but also covers the highest Very Large Baseline Interferometry (VLBI) frequencies ever being systematically monitored, up to 129 GHz. However, observation and imaging of weak sources at the highest observed frequencies is very challenging. In the second paper in this series, we evaluate the viability of the frequency phase transfer technique to iMOGABA in order to obtain larger coherence time at the higher frequencies of this program (86 and 129 GHz) and image additional sources that were not detected using standard techniques. We find that this method is applicable to the iMOGABA program even under non–optimal weather conditions.
        5,400원
        23.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper we introduce the Plasma Physics of Active Galactic Nuclei project, which is an ongoing experiment with Korean VLBI Network (KVN) and KVN and VERA Array (KaVA) to study multi- frequency polarimetric properties on parsec scales of active galaxies. The goal of the project is to improve our understanding of fundamental jet physics, especially evolution of the relativistic out ow coupled with the large-scale magnetic field. We selected six radio-loud AGN as our targets. So far we (i) detected resolved emissions regions at 86 and 129 GHz on VLBI scales, (ii) constructed 2D spectral index maps of the out ows, and (iii) found polarizations at 22 and 43 GHz for a few targets. Here we present spectral index distributions of 3C 120 between 22 and 43 GHz and a linear polarization map of BL Lac at 43 GHz obtained with KVN.
        3,000원
        24.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We show the results of a time series analysis of the long-term light curves of four blazars: 3C 279, 3C 345, 3C 446, and BL Lacertae. We used densely sampled light curves spanning 32 years at three frequency bands (4.8, 8, 14.5 GHz), provided by the University of Michigan Radio Astronomy Observatory monitoring program. The spectral indices of our sources are mostly at or inverted (-0:5 < α < 0), which is consistent with optically thick emission. Strong variability was seen in all light curves on various time scales. From the analyses of time lags between the light curves from different frequency bands and the evolution of the spectral indices with time, we find that we can distinguish high-peaking ares and lowpeaking ares according to the Valtaoja et al. classification. The periodograms (temporal power spectra) of the light curves are in good agreement with random-walk power-law noise without any indication of (quasi-)periodic variability. We note that random-walk noise light curves can originate from multiple shocks in jets. The fact that all our sources are in agreement with being random-walk noise emitters at radio wavelengths suggests that such behavior is a general property of blazars. We are going to generalize our approach by applying our methodology to a much larger blazar sample in the near future.
        4,000원
        25.
        2015.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The masses of supermassive black holes in active galactic nuclei (AGN) can be derived spec- troscopically via virial mass estimators based on selected broad optical/ultraviolet emission lines. These estimates commonly use the line width as a proxy for the gas speed and the monochromatic continuum luminosity, λLλ, as a proxy for the radius of the broad line region. However, if the size of the broad line region scales with the bolometric AGN luminosity rather than λLλ, mass estimates based on different emission lines will show a systematic discrepancy which is a function of the color of the AGN continuum. This has actually been observed in mass estimates based on Hα/Hβ and Civ lines, indicating that AGN broad line regions indeed scale with bolometric luminosity. Given that this effect seems to have been overlooked as yet, currently used single-epoch mass estimates are likely to be biased.
        3,000원
        26.
        2015.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Massive gravity provides a natural solution for the dark energy problem of cosmology and is also a candidate for resolving the dark matter problem. I demonstrate that, assuming reasonable scaling relations, massive gravity can provide for Milgrom’s law of gravity (or “modified Newtonian dynamics”) which is known to remove the need for particle dark matter from galactic dynamics. Milgrom’s law comes with a characteristic acceleration, Milgrom’s constant, which is observationally constrained to a0 ≈ 1.1×10−10ms−2. In the derivation presented here, this constant arises naturally from the cosmologically required mass of gravitons like a0 ∝ c√ ∝ cH0√3 , with , H0, and  being the cosmological constant, the Hubble constant, and the third cosmological parameter, respectively. My derivation suggests that massive gravity could be the mechanism behind both, dark matter and dark energy.
        3,000원
        31.
        2014.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The jet production efficiency of radio galaxies can be quantified by comparison of their kinetic jet powers Pjet and Bondi accretion powers PB. These two parameters are known to be related linearly, with the jet power resulting from the Bondi power by multiplication with an efficiency factor of order 1%. Using a recently published (Nemmen & Tchekhovskoy 2014) high-quality sample of 27 radio galaxies, I construct a PB − Pjet diagram that includes information on optical AGN types as far as available. This diagram indicates that the jet production efficiency is a function of AGN type: Seyfert 2 galaxies seem to be systematically (with a false alarm probability of 4.3 × 10−4) less efficient, by about one order of magnitude, in powering jets than Seyfert 1 galaxies, LINERs, or the remaining radio galaxies. This suggests an evolutionary sequence from Sy 2s to Sy 1s and LINERs, controlled by an interplay of jets on the one hand and dust and gas in galactic nuclei on the other hand. When taking this effect into account, the PB − Pjet relation is probably much tighter intrinsically than currently assumed.
        3,000원
        33.
        2014.04 구독 인증기관·개인회원 무료
        34.
        2014.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Polarization is a basic property of light and is fundamentally linked to the internal geometry of a source of radiation. Polarimetry complements photometric, spectroscopic, and imaging analyses of sources of radiation and has made possible multiple astrophysical discoveries. In this article I review (i) the physical basics of polarization: electromagnetic waves, photons, and parameterizations; (ii) astrophysical sources of polarization: scattering, synchrotron radiation, active media, and the Zeeman, Goldreich- Kylafis, and Hanle effects, as well as interactions between polarization and matter (like birefringence, Faraday rotation, or the Chandrasekhar-Fermi effect); (iii) observational methodology: on-sky geometry, influence of atmosphere and instrumental polarization, polarization statistics, and observational techniques for radio, optical, and X/γ wavelengths; and (iv) science cases for astronomical polarimetry: solar and stellar physics, planetary system bodies, interstellar matter, astrobiology, astronomical masers, pulsars, galactic magnetic fields, gamma-ray bursts, active galactic nuclei, and cosmic microwave background radiation.
        6,300원
        36.
        2013.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The empirical mass discrepancy–acceleration (MDA) relation of disk galaxies provides a key test for models of galactic dynamics. In terms of modified laws of gravity and/or inertia, the MDA relation quantifies the transition from Newtonian to modified dynamics at low centripetal accelerations ac ≤ 10−10ms−2. As yet, neither dynamical models based on dark matter nor proposed modifications of the laws of gravity/inertia have predicted the functional form of the MDA relation. In this work, I revisit the MDA data and compare them to four different theoretical scaling laws. Three of these scaling laws are entirely empirical; the fourth one – the “simple μ” function of Modified Newtonian Dynamics – derives from a toy model of gravity based on massive gravitons (the “graviton picture”). All theoretical MDA relations comprise one free parameter of the dimension of an acceleration, Milgrom’s constant aM. I find that the “simple μ” function provides a good fit to the data free of notable systematic residuals and provides the best fit among the four scaling laws tested. The best-fit value of Milgrom’s constant is aM = (1.06 ± 0.05) × 10−10ms−2. Given the successful prediction of the functional form of the MDA relation, plus an overall agreement with the observed kinematics of stellar systems spanning eight orders of magnitude in size and 14 orders of magnitude in mass, I conclude that the “graviton picture” is sufficient (albeit probably not a necessary nor unique approach) to describe galactic dynamics on all scales well beyond the scale of the solar system. This suggests that, at least on galactic scales, gravity behaves as if it was mediated by massive particles.
        4,000원
        37.
        2013.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Modified Newtonian Dynamics (MOND) is a possible solution for the missing mass problem in galac- tic dynamics; its predictions are in good agreement with observations in the limit of weak accelerations. However, MOND does not derive from a physical mechanism and does not make predictions on the transitional regime from Newtonian to modified dynamics; rather, empirical transition functions have to be constructed from the boundary conditions and comparisons with observations. I compare the formalism of classical MOND to the scaling law derived from a toy model of gravity based on virtual massive gravitons (the “graviton picture”) which I proposed recently. I conclude that MOND naturally derives from the “graviton picture” at least for the case of non-relativistic, highly symmetric dynamical systems. This suggests that – to first order – the “graviton picture” indeed provides a valid candidate for the physical mechanism behind MOND and gravity on galactic scales in general.
        3,000원
        40.
        2013.04 구독 인증기관·개인회원 무료
        1 2 3