History of Instream Flow Incremental Methodology (IFIM) Following the large reservoir and water development era of the mid-twentieth century in North America, resource agencies became concerned over the loss of many miles of riverine fish and wildlife resources in the arid western United States. Consequently, several western states began issuing rules for protecting existing stream resources from future depletions caused by accelerated water development. Many assessment methods appeared during the 1960’s and early 1970’s. These techniques were based on hydrologic analysis of the water supply and hydraulic considerations of critical stream channel segments, coupled with empirical observations of habitat quality and an understanding of riverine fish ecology. Following enactment of the National Environmental Policy Act (NEPA) of 1970, attention was shifted from minimum flows to the evaluation of alternative designs and operations of federally funded water projects. Methods capable of quantifying the effect of incremental changes in stream flow to evaluate a series of possible alternative development schemes were needed. This need led to the development of habitat versus discharge functions developed from life stage-specific relations for selected species, that is, fish passage, spawning, and rearing habitat versus flow for trout or salmon. During the late 1970’s and early 1980’s, an era of small hydropower development began. Hundreds of proposed hydropower sites in the Pacific Northwest and New England regions of the United States came under intensive examination by state and federal fishery management interests. During this transition period from evaluating large federal reservoirs to evaluating license applications for small hydropower, the Instream Flow Incremental Methodology (IFIM) was developed under the guidance of the U.S. Fish and Wildlife Service (USFWS).
The 21st Century Frontier Program, which is one of the R&D programs funded by Korean government, was launched in 1999 to elevate the status of Korean science and engineering capabilities to the advanced nation in the strategic fields. Currently, 23 different fields of science and engineering programs are carried out by researchers in institutes, universities and industries. Center for Advanced Materials Processing (CAMP) was formulated in 2001 to develop the advanced materials as well as to improve the parts manufacturing process. The main role of CAMP is proposing and forecasting the long term vision in Materials Processing Technology and also supporting the project teams for their best performance in R&D. The CAMP program consists of 5 research areas such as, Multi-layer Ceramic Electronic Parts, Powder Formed Precision Parts, 3 Dimensional Polymer Based Composites, Functional Metal Sheets, Parts Integration Technology. An introduction of R & D activities at CAMP, specially focusing on powder metallurgy, wil be presented.