The Colloid Formation and Migration (CFM) international joint research initiative continues as a part of the GTS’s Radionuclide Retardation Programme, which has been in progress since 1984. This project focuses on examining the formation of colloids from a bentonite-engineered barrier system and exploring how these colloids impact the migration of radionuclides in fractured host rock when subjected to advective flow. Phase 1 of the project was launched in 2004 and concluded in early 2008, focusing on preliminary studies related to in-situ boundary conditions, predicting models, and supplementary lab works. Following that, Phase 2 spanned from 2008 to 2013 and aimed at fortifying the field setup by adding three new monitoring boreholes and suitable instrumentation in both the boreholes and tunnel. This phase also tested the system’s resilience while mapping the flow domain. Phase 3 kicked off in January 2014 and extended until December 2018. During this period, the Long-term In-situ Test (LIT) was introduced in May 2014, featuring a set of compacted bentonite rings laced with radionuclide tracers. These were placed in a borehole to serve as a colloid and radionuclide source. CFM Phase 4 initiative commenced in January 2019, marking the successful deployment of the i-BET (In-situ Bentonite Erosion Test). This project component involves placing approximately 50 kg of compacted bentonite in a natural water-conducting shear zone. Korea Atomic Energy Research Institute (KAERI) joined CFM in 2008 to examine the behavior of colloid generation and migration with radionuclides in the Underground Research Laboratory. The fourth phase of the CFM project was also scheduled to include a post-mortem evaluation of the LIT and additional tracer experiments in the well-mapped MI shear zone. This study aims to provide an interim update on the ongoing i-BET, a key component of Phase 4 of the CFM project. We will also discuss the current status of the post-mortem analysis for the LIT experiment. In addition, we will outline plans for the forthcoming Phase VI of the project. These plans will continue to advance our understanding of radionuclide migration and the influence of bentonite-based disposal systems.
In the high-level waste disposal systems, colloids generated through the chemical erosion of bentonite buffers can serve as critical mediators for the transport of radionuclides from the disposal environment to the biosphere. The stability of these colloids is influenced by the chemical composition of the groundwater. According to DLVO theory, the Critical Coagulation Concentration (CCC) is the ionic strength at which the total repulsive force between colloids is either less than or equal to the total attractive force. At ionic strengths lower than the CCC, electrostatic double-layer repulsion outweighs van der Waals attraction, forming a repulsive barrier between particles. Conversely, at ionic strengths higher than the CCC, attractive forces dominate, leading to particle aggregation. To investigate the CCC of bentonite colloids, this study focused on Ca-type WRK bentonite. Colloids separated from a ten g/L bentonite suspension underwent centrifugation (1,200 g for 30 minutes) and dialysis (3,500 MWCO) to produce colloid samples. After adjusting the ionic strength from 0.1 mM to 10 mM, the particle size distribution was monitored as a function of aggregation time for approximately 20 days. Rate constants, calculated based on variations in ionic strength, were used to interpret the observed results. The experimental outcomes revealed that the CCC value for WRK bentonite colloids was an order of magnitude lower with CaCl2 than with NaCl. This suggests that Ca ions have a more significant impact on colloid stability, which has implications for the longterm safety of high-level waste disposal systems.
The final disposal of Spent Nuclear Fuel (SNF) will take place in a deep geological repository. The metal canister surrounding the SNF is made of cast iron and copper, designed to provide longterm containment of radionuclides. Canister is intended to be safeguarded by a multiple-barrier disposal system comprising engineered and natural barriers. Colloids and gases are mediators that can accelerate radionuclide migration and influence radionuclide behavior when radionuclides leak from the canister at the end of its service life. It is very important to consider these factors in the assessment of the long-term stability of deep dispoal repository. An experimental setup was designed to observe the acceleration of nuclide behavior due to gas-mediated transport in a simulated environment with specific temperature and pressure conditions, similar to those of a deep disposal repository. In this study, experiments were conducted to simulate gas flow within an engineered barrier under conditions reflecting 1000 years post repository closure. The experiment utilized bentonite WRK with a dry density of 1.61 g/cm³ after compaction. The compacted bentonite was subsequently saturated under a water pressure of 5 MPa, equivalent to the hydrostatic pressure found 500 meters underground. Gas was introduced into the saturated bentonite at different pressures to assess the permeation behavior of the bentonite relative to gas pressure variations. Consequently, it was observed that under specific pressures, gas permeated the saturated bentonite, ascending in the form of bubbles. Furthermore, it was noted that when a continuous flow was initiated within the bentonite, erosion took place, leading to the buoyant transportation of eroded particles upward by the bubbles. The particles transported by the bubbles had a relatively small particle size distribution, and cesium also tended to be transported by the bubbles and moved upward. When high-pressure gas is generated at the interface of the canister and the buffer, flow through the buffer can occur, and cationic nuclides such as cesium and strontium can be attached to the gas bubble and migrate. However, the pressure of the gas to break through the saturated buffer is very high, and the amount of cesium transported by the gas bubbles is very limited.
The spent fuels derived from the nuclear reactor facilities may be finally disposed in a deep underground below 500 m. It majorly has uranium with minor iodine, which is a typical anionic radionuclide. In particular, radioiodine has higher mobility from its spent fuel source. It has been well known that it could freely pass through a compacted bentonite that is one of underground engineering barriers that are used to retard some nuclide’s migration from the spent fuel. We installed a small laboratory apparatus in an anaerobic glove box imitating such an underground repository and evaluated the iodine mobility in compacted bentonites with or without copper. Some copper-bearing bentonites were prepared in two types, a copper ion-exchanged form and a copper nanoparticle-mixed one. In our study, we tried to find an effect of sulfate that has an ability to retard mobile iodine from the compacted bentonite for a long-term period. Conclusively, we found an effective way to limit the iodine release from the compacted bentonite. This condition can be achievable by exchanging the bentonite interlayer cations with copper ions or by simply mixing copper nanoparticles with bentonite powder. In those cases, soluble iodine can be easily immobilized as a solid phase (i.e., marshite (CuI)) by combining with copper via the geochemical role of sulfate and indigenous SRB (sulfate reducing bacteria) of bentonite.
Bentonite is a promising buffer material for high-level radioactive waste (HLW) disposal due to the high nuclides sorption capacity and swelling property. However, bentonite has the potential to generate colloid particles, with small particle sizes less than 1,000 nm when in contact with groundwater. The bentonite colloids easily form pseudo-colloid with the released nuclides and migrate through the water-conducting rock to the biosphere. Therefore, understanding the generation and migration of bentonite colloids is crucial in assessing the safety of the HLW repository. In this study, an artificial fracture system was prepared to investigate colloid release from compacted bentonite. A 250 mm diameter acrylic artificial fracture system was used, with 30 mm of compacted calcium bentonite installed. Artificial groundwater flow was injected into the system at a flow rate of 250 μL/h, and every 6 mL of leachate was collected by a fraction collector. A film-type pressure sensor was equipped to monitor the swelling pressure, and the swelling was observed using a digital microscope. The results indicate that the compacted bentonite formed a mineral ring originating from the swelling of the bentonite, and the end of the ring generated colloid particles due to chemical erosion. Although the release rate of colloids increased with increasing flow rate, the colloid ratio depended on the low ionic strength of the injected artificial groundwater. This work contributes to the understanding of the chemical erosion and colloid release mechanism of compacted bentonite.
The design of a radioactive waste disposal system should include both natural and engineered barriers to prevent radionuclide leakage and groundwater contamination. Colloids and gases can accelerate the movement of radionuclides and affect their behavior. It is important to consider these factors in the long-term stability evaluation of a deep geological repository. An experimental setup was designed to observe the acceleration of nuclide behavior caused by gas-mediated transport in a simulated high temperature and pressure environment, similar to a deep disposal repository. The study used specimens to simulate gas flow in engineered barriers, based on conditions 1000 years after repository closure. In the experiment, bentonite WRK with a dry density of 1.61 g/cm3 was used after compaction. Measurements were taken of the saturation time and gas permeability of compacted bentonite. In this study, gas was injected into saturated buffer materials at various pressures to evaluate the penetration phenomenon of the buffer material according to the gas pressure. It was observed that gas penetrated the buffer material and moved upward in the form of gas bubbles at a specific pressure. Furthermore, when a flow was continuously induced to penetrate the buffer material, erosion occurred, and the eroded particles were found to be able to float upward or be transported by gas bubbles. In future studies, analysis will be conducted on the transport rate of fine particles according to the size of gas bubbles and the characteristics of the nuclides adsorbed on the fine particles.
Uranium inventory in Boeun aquifer is facing the artificial reservoir that intended for supplying water to nearby cities (40-70 m apart) where, toxic radionuclides might mobile and enter the reservoir. In order to understand U mobility in the system, groundwater and fracture filling materials (FFMs) were analyzed for microbial signatures, C, O, Fe, S and U-series isotopes. The δ18O-H2O and 14C signatures suggested groundwater was originated from upland recharges dominantly and not affected by mixing with the surface water. However, the 234U/238U activity ratios (ARs) and 230Th/234U ARs in FFMs ranged from 0.93 to 1.67 and from 0.22 to 1.97, respectively, indicating that U was mobile along the fractures. In shallow FFMs, the U accumulations (~157 mg/kg) were found with Fe enrichments (~226798 mg/kg) and anomalies of δ56Fe and δ57Fe, implied U mobility in shallow depths was associated with Fe-rich environment. Also, in the shallow depths, Fe-oxidizers, Gallionella was prevailing in groundwater while Acidovorax was abundant near U ore depth. The Fe-rich environment in shallow depths was formed by pyrite dissolution, demonstrated using δ34S-SO4 and δ18O-SO4 distribution. Conclusively, the Fe-rich aquifer was capable of immobilizing the dissolved U through biotic and abiotic processes, without significant discharge into the nearby reservoir.
Colloid Formation and Migration (CFM) project is being carried out within the Grimsel Test Site (GTS) Phase Ⅵ. Since 2008, the Korea Atomic Energy Research Institute (KAERI) has joined CFM to investigate the behavior of colloid-facilitated radionuclide transport in a generic Underground Research Laboratory (URL). The CFM project includes a long-term in-situ test (LIT) and an in-rock bentonite erosion test (i-BET) to assess the in-situ colloid-facilitated radionuclide transport through the bentonite erosion in the natural flow field. In the LIT experiment, radionuclide-containing compacted bentonite was equipped with a triple-packer system and then positioned at the borehole in the shear zone. It was observed that colloid transport was limited owing to the low swelling pressure and low hydraulic conductivity. Therefore, a postmortem analysis is being conducted to estimate the partial migration and diffusion of radionuclides. The i-BET experiment, that focuses more on bentonite erosion, was newly designed to assess colloid formation in another flow field. The i-BET experiment started with the placement of compacted bentonite rings in the double-packer system, and the hydraulic parameters and bentonite erosion have been monitored since December 2018.
Safe storage of spent nuclear fuel in deep underground repositories needs an understanding of the long-term alteration (corrosion) of metal canisters and buffer materials. We conducted a small-scale laboratory alteration tests on some metal (Cu and Fe) chips by embedding them into the compacted bentonite blocks, which were placed in anaerobic water for 1 year. Some additives like lactate, sulfate, and bacteria were separately loaded into the water to promote biochemical reactions. The bentonite blocks immersed in the water were finally dismantled after 1 year, and they showed that their alteration was insignificant. However, the Cu chip exhibited some microscopic etch pits on its surface, wherein sulfur component was slightly detected. Overall, the Fe chip was more corroded than the Cu chip under the same condition. The secondary phase of the Fe chip was locally found as carbonate materials, such as siderite (FeCO3) and calcite ((Ca, Fe)CO3). These secondary products could imply that the local carbonate production around the Fe chip may be initiated by an evolution (alteration) of bentonite and a diffusive provision of biogenic CO2 gas. These laboratory scale test results suggest that the long-term alteration (corrosion) of metal canister/bentonite blocks in the engineered barrier could be possible and may be promoted by microbial activities.
Colloid-facilitated migration has been significantly concerned with the acceleration of the radionuclide mobility in the HLW repository. In the repository system, the compacted bentonite, which is the buffer material, could be the major source for colloid generation; hence, the understanding of colloid generation from the bentonite is the essential to expect the colloid-facilitated radionuclide migration. This study aimed to investigate the colloid generation using a bentonite-based micro-scale flow path system, which called microfluidics. In order to fabricate the microfluidics, direct milling method was applied to make a mold by computer numerical control. The fabricated mold applied to prepare the microfluidic chip by Polydimethylsiloxane (PDMS), in which the size of microchannel was designed to be one micrometer. Initially, sylgard 184 and curing agent mixed and stirred for 10 min, afterwards the bubbles in the paste was removed in the vacuum desiccator for 30 min. Then the paste was poured into the mold, and finally dried for 4 hours at 80°C in a dry oven. The compacted Ca-bentonite chip was prepared by the cold isostatic pressing (CIP) method with the dry density of 1.6 g·cm−3. The microfluidic chip and compacted bentonite chip were assembled by an acryl jig, the flow rate was adjusted by 20 mL syringe equipped syringe pump. The degree of colloid generation accompanied with the erosion of bentonite was gravimetrically examined after the experiment. The effect of the pH and ionic strength on the colloid formation was investigated through the particle size, stability and aggregation. To the best of our knowledge, this is the first examination for the colloid generation using microfluidics; these results would give information to understand the colloid formation from the compacted Ca-bentonite in the HLW repository system.
A method to effectively scavenge highly mobile radioiodide into a solid material was developed. Under an anaerobic condition, as copper(II) was strongly associated with bicarbonate (HCO3 −) in solution, malachite quickly formed, and then it was gradually transformed to a compact crystal of CuI (marshite) attracting iodide. The formation of CuI crystal was principally led by the spontaneous Cu-I redox reaction centering around the copper phase over the presence of sulfate (SO4 2−). The transformed CuI crystal was poorly soluble in water. Interestingly, this redox-induced iodide crystallization was rather promoted over the existence of anionic competitors (e.g., HCO3 − and SO4 2−). Unlike the conventional methods, these competing anions positively behaved in our system by supporting that the initial malachite was more apt to be reactive to largely attract highly mobile I−. Under practical environments, such a selective I− uptake and fixation into a crystalline form will be a promising way to effectively remove I− in a great capacity.
The radioactive waste disposal systems should consist of engineering and natural barriers that limit the leakage of radionuclide from spent nuclear fuel and fundamentally block groundwater from contact with radioactive waste. These considerations and criteria for designing a disposal system are important factors for the long-term stability evaluation of deep geological repository. Colloids and gases that may occur in the near-field and groundwater infiltrated from outside can be means to accelerate the behavior of radionuclide. The gas produced and infiltrated in the disposal system is highly mobile in the porous medium, and reactive gases in particular can affect the phase and behavior of radionuclide. A free gas phase (bubble) can be formed inside the canister if the partial pressure of the generated gas exceeds the hydrostatic pressure. If the gas pressure exceeds the critical endurance pressure of canister and buffer, then a gas bubble may push through the canister perforation and the buffer. It is also known that when gas bubbles are formed, radionuclide or colloids are adsorbed on the surface of the bubbles to enable accelerated movement. An experimental setup was designed to study the acceleration of nuclide behavior induced by gas-mediated transport. A high temperature and pressure reaction system that can simulate the deep disposal environment (500 m underground) was designed. It is also designed to install specimens to simulate gas flow in engineered barriers and natural barriers. The experimental scenario was set based on 1,000 years after the closure of the repository. According to the previous modeling results, the surface temperature of the canister is about 30 to 40 degrees and the gas pressure can be generated between the canister and the buffer is 5 MPa or more. In the experimental conditions, the saturation time of compacted bentonite was measured and the gas permeability of the compacted bentonite according to the dry density was also measured. Further studies are needed on the diffusion of dissolved gas into the compacted bentonite and the permeation phenomenon due to gas overpressure.
Safe storage of spent nuclear fuel in deep underground repositories necessitates an understanding of the long-term alteration of metal canisters and buffer materials. A small-scale laboratory alteration test was performed on metal (Cu or Fe) chips embedded in compacted bentonite blocks placed in anaerobic water for 1 year. Lactate, sulfate, and bacteria were separately added to the water to promote biochemical reactions in the system. The bentonite blocks immersed in the water were dismantled after 1 year, showing that their alteration was insignificant. However, the Cu chip exhibited some microscopic etch pits on its surface, wherein a slight sulfur component was detected. Overall, the Fe chip was more corroded than the Cu chip under the same conditions. The secondary phase of the Fe chip was locally found as carbonate materials, such as siderite (FeCO3) and calcite ((Ca, Fe)CO3). These secondary products can imply that the local carbonate occurrence on the Fe chip may be initiated and developed by an evolution (alteration) of bentonite and a diffusive provision of biogenic CO2 gas. These laboratory scale results suggest that the actual long-term alteration of metal canisters/bentonite blocks in the engineered barrier could be possible by microbial activities.