대다수의 부유식 해양플랜트는 위치 유지의 방법으로서 체인 계류 시스템을 사용하나, 그 설계 변경 과정은 논문으로 찾아보 기 힘들다. 본 연구는 FLBT를 대상 해양플랜트로 선정하여 계류 초기설계안과 모형시험을 수치해석으로 분석하고, 변경된 설계조건에 따 라 새로운 계류 설계안을 제시하였다. 주된 환경 방향에 따라 계류선 묶음(bundle)의 주 방향을 조절하는 것이 계류 설계하중 감소에 크게 유효했다. 터렛 계류된 해양플랜트라도 횡파에 노출되며, 횡파 중 운동 때문에 높은 계류 인장력이 발생했다. 일치된 환경 방향 조건은 설 계조건이 될 수 없으며, 바람, 파도, 조류의 각 환경 방향이 복잡한 조건에서 설계 계류 하중이 발생했다. 횡요 운동이 계류 인장력에 미치 는 영향이 큼으로 적절한 횡요 감쇠 계수를 계류해석에 적용하는 것이 중요하다.
The oocyte and its surrounding granulosa cells co-exist in a closed compartment called a follicle, although they receive many signals from other parts of the body. It is well established that the intercellular communications between the oocyte and granulosa cells are required for normal oocyte development and ovulation during folliculogenesis. Gap junctions are intercellular channels allowing the direct transmission of ions and small molecules between coupled cells. Several lines of studies have shown that multiple connexins (Cx, subunits of gap junction) are expressed in mammalian ovarian follicles. Among them, two major connexins Cx37 and Cx43 are expressed in different manner. While the gap junction channels formed by Cx37 are localized between the oocyte and encompassing granulosa cells, the intercellular channels by Cx43 are located between granulosa cells. In this review, I will summarize the general properties of gap junction channels and discuss their possible formation (or compatibility) of intercellular channels formed by the oocyte and granulosa cells.
Polycyclic aromatic hydrocarbons (PAHs), which are ubiquitous in the air, are present as volatile and particulate pollutants that result from incomplete combustion. Most PAHs have toxic, mutagenic, and/or carcinogenic properties. Among PAHs, benzo[a]pyrene (B[a]P) and dimethylbenz[a]anthracene (DMBA) are suspected endocrine disruptors. The testis is an important target for PAHs, yet effects on steroidogenesis in Leydig cells are yet to be ascertained. Particularly, disruption of testosterone production by these chemicals can result in serious defects in male reproduction. Exposure to B[a]P reduced serum and intratesticular fluid testosterone levels in rats. Of note, the testosterone level reductions were accompanied by decreased steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase isomerase (3b-HSD) expression in Leydig cells. B[a]P exposure can decrease epididymal sperm quality, possibly by disturbing the testosterone level. StAR may be a key steroidogenic protein that is targeted by B[a]P or other PAHs. Key words : Polycyclic aromatic hydrocarbons, Endocrine disruptor, Steroidogenesis, Leydig cells