Thermal shock resistance property has recently been considered to be one of the most important basic properties, in the same way that the transverse-rupture property is important for sintered hard materials such as ceramics, cemented carbides, and cermets. Attempts were made to evaluate the thermal shock resistance property of 10 vol% TaC added Ti(C,N)-Ni cermets using the infrared radiation heating method. The method uses a thin circular disk that is heated by infrared rays in the central area with a constant heat flux. The technique makes it possible to evaluate the thermal shock strength (Tss) and thermal shock fracture toughness (Tsf) directly from the electric powder charge and the time of fracture, despite the fact that Tss and Tsf consist of the thermal properties of the material tested. Tsf can be measured for a specimen with an edge notch, while Tss cannot be measured for specimens without such a notch. It was thought, however, that Tsf might depend on the radius of curvature of the edge notch. Using the Tsf data, Tss was calculated using a consideration of the stress concentration. The thermal shock resistance property of 10 vol% TaC added Ti(C,N)-Ni cermet increased with increases in the content of nitrogen and Ni. As a result, it was considered that Tss could be applied to an evaluation of the thermal shock resistance of cermets.
TiC-21mol% Mo solid solution (δ-phase) and TiC-99 mol% Mo solid solution (β-phase), and TiC-(80~90)mol%Mo hypo-eutectic composite were deformed by compression in a temperature range from room to 2300 K and in a strain raterange from 4.9×10−5 to 6.9×10−3/s. The deformation behaviors of the composites were analyzed from the strengths of theδ- and β-phases. It was found that the high strength of the eutectic composite is due primarily to solution hardening of TiCby Mo, and that the δ-phase undergoes an appreciable plastic deformation at and above 1420 K even at 0.2% plastic strainof the composite. The yield strength of the three kinds of phase up to 1420 K is quantitatively explained by the rule of mixture,where internal stresses introduced by plastic deformation are taken into account. Above 1420 K, however, the calculated yieldstrength was considerably larger than the measured strength. The yield stress of β-phase was much larger than that of pure TiC.A good linear relationship was held between the yield stress and the plastic strain rate in a double-logarithmic plot. Thedeformation behavior in δ-phase was different among the three temperature ranges tested, i.e., low, intermediate and high. Atan intermediate temperature, no yield drop occurred, and from the beginning the work hardening level was high. At the testedtemperature, a good linear relationship was held in the double logarithmic plot of the yield stress against the plastic strain rate.The strain rate dependence of the yield stress was very weak up to 1273 K in the hypo-eutectic composite, but it becamestronger as the temperature rose.
In order to clarify the effect of Nb addition on the ductile-brittle transition property of sintered TiC, TiC-10 mol% Nb composites were researched using a three-point bending test at temperatures from room temperature to 2020 K, and the fracture surface was observed by scanning electron microscopy. It was found that the Nb addition decreases the ductile-brittle transition temperature of sintered TiC by 300 K and increases the ductility. The room temperature bending strength was maintained at up to 1800 K, but drastically dropped at higher temperatures in pure TiC. The strength increased moderately to a value of 320MPa at 1600 K in TiC-10 mol% Nb composites, which is 40% of the room temperature strength. Pores were observed in both the grains and the grain boundaries. It can be seen that, as Nb was added, the size of the grain decreased. The ductile-brittle transition temperature in TiC-10 mol% Nb composites was determined to be 1550 K. Above 1970 K, yieldpoint behavior was observed. When the grain boundary and cleavage strengths exceed the yield strength, plastic deformation is observed at about the same stress level in bending as in compression. The effect of Nb addition is discussed from the viewpoint of ability for plastic deformation.
The deformation properties of a TiC-Mo eutectic composite were investigated in a compression test at temperaturesranging from room temperature to 2053K and at strain rates ranging from 3.9×10−5s−1 to 4.9×10−3s−1. It was found that thismaterial shows excellent high-temperature strength as well as appreciable room-temperature toughness, suggesting that thematerial is a good candidate for high-temperature application as a structure material. At a low-temperature, high strength isobserved. The deformation behavior is different among the three temperature ranges tested here, i.e., low, intermediate and high.At an intermediate temperature, no yield drop occurs, and from the beginning the work hardening level is high. At a hightemperature, a yield drop occurs again, after which deformation proceeds with nearly constant stress. The temperature- andyield-stress-dependence of the strain is the strongest in this case among the three temperature ranges. The observed high-temperature deformation behavior suggests that the excellent high-temperature strength is due to the constraining of thedeformation in the Mo phase by the thin TiC components, which is considerably stronger than bulk TiC. It is also concludedthat the appreciable room-temperature toughness is ascribed to the frequent branching of crack paths as well as to the plasticdeformation of the Mo phase.
In order to clarify the effect of C/Ti atom ratios(χ) on the deformation behavior of TiCχ at high temperature, singlecrystals having a wide range of χ, from 0.56 to 0.96, were deformed by compression test in a temperature range of 1183~2273Kand in a strain rate range of 1.9×10−4~5.9×10−3s−1. Before testing, TiCχ single crystals were grown by the FZ method ina He atmosphere of 0.3MPa. The concentrations of combined carbon were determined by chemical analysis and the latticeparameters by the X-ray powder diffraction technique. It was found that the high temperature deformation behavior observedis the χ-less dependent type, including the work softening phenomenon, the critical resolved shear stress, the transitiontemperature where the deformation mechanism changes, the stress exponent of strain rate and activation energy for deformation.The shape of stress-strain curves of TiC0.96, TiC0.85 and TiC0.56 is seen to be less dependent on χ, the work hardening rate afterthe softening is slightly higher in TiC0.96 than in TiC0.85 and TiC0.56. As χ decreases the work softening becomes less evidentand the transition temperature where the work softening disappears, shifts to a lower temperature. The τc decreasesmonotonously with decreasing χ in a range of χ from 0.86 to 0.96. The transition temperature where the deformationmechanism changes shifts to a lower temperature as χ decreases. The activation energy for deformation in the low temperatureregion also decreased monotonously as χ decreased. The deformation in this temperature region is thought to be governed bythe Peierls mechanism.
Delamination crack detection is very important for improving the structural reliability of laminated composite structures. This requires real-time delamination detection technologies. For composite laminates that are reinforced with carbon fiber, an electrical potential method uses carbon fiber for reinforcements and sensors at the same time. The use of carbon fiber for sensors does not need to consider the strength reduction of smart structures induced by imbedding sensors into the structures. With carbon fiber reinforced (CF/) epoxy matrix composites, it had been proved that the delamination crack was detected experimentally. In the present study, therefore, similar experiments were conducted to prove the applicability of the method for delamination crack detection of CF/polyetherethereketone matrix composite laminates. Mode I and mode II delamination tests with artificial cracks were conducted, and three point bending tests without artificial cracks were conducted. This study experimentally proves the applicability of the method for detection of delamination cracks. CF/polyetherethereketone material has strong electric resistance anisotropy. For CF/polyetherethereketone matrix composites, a carbon fiber network is constructed, and the network is broken by propagation of delamination cracks. This causes a change in the electric resistance of CF/polyetherethereketone matrix composites. Using three point bending specimens, delamination cracks generated without artificial initial cracks is proved to be detectable using the electric potential method: This method successfully detected delamination cracks.
Composites of insulating polyethylene and carbon black are widely used in switching elements, conductive paint, and other applications due to the large gap of resistance value. This research addresses the critical exponent of dielectric breakdown strength of polymer matrix composites (PMC) made with carbon black and polyethylene below the percolation threshold (Pt) for the first time. Here, Pt means the volume fraction of carbon black of which the resistance of the PMC is transferred from its sharp decrease to gradual decrease in accordance with the increase of carbon-black-filled content. First, the Pt is determined based on the critical exponents of resistivity and relative permittivity. Although huge cohesive bodies of carbon black are formed in case of being less than the Pt, a percolation path connecting the conducting phases is not formed. The dielectric breakdown strength (Dbs) of the PMC below Pt is measured by using an impulse voltage in the range from 10 kV to 40 kV to avoid the effect of joule heating. Although the observed Dbs data seems to be well fitted to a straight line with a slope of 0.9 on a double logarithm of (Pt-VCB) and Dbs, the least squares method gives a slope of 0.97 for the PMC. It has been found that finite carbon-black clusters play an important role in dielectric breakdown.
It is known that the relative dielectric constant of insulating polyethylene matrix composites with conducting materials (such as carbon black and metal powder) increases as the conducting material content increases below the percolation threshold. Below the percolation threshold, dielectric properties show an ohmic behavior and their value is almost the same as that of the matrix. The change is very small, but its origin is not clear. In this paper, the dielectric properties of carbon black-filled polyethylene matrix composites are studied based on the effect medium approximation theory. Although there is a significant amount of literature on the calculation based on the theory of changing the parameters, an overall discussion taking into account the theory is required in order to explain the dielectric properties of the composites. Changes of dielectric properties and the temperature dependence of dielectric properties of the composites made of carbon particle and polyethylene below the percolation threshold for the volume fraction of carbon black have been discussed based on the theory. Above the percolation threshold, the composites are satisfied with the universal law of conductivity, whereas below the percolation threshold, they give the critical exponent of s = 1 for dielectric constant. The rate at which the percentages of both the dielectric constant and the dielectric loss factor for temperature increases with more volume fraction below the percolation threshold.
In this paper two aspects of the percolation and conductivity of carbon black-filled polyethylene matrix composites will be discussed. Firstly, the percolation behavior, the critical exponent of conductivity of these composites, are discussed based on studying the whole change of resistivity, the relationship between frequency and relative permittivity or ac conductivity. There are two transitions of resistivity for carbon black filling. Below the first transition, resistivity shows an ohmic behavior and its value is almost the same as that of the matrix. Between the first and second transition, the change in resistivity is very sharp, and a non-ohmic electric field dependence of current has been observed. Secondly, the electrical conduction property of the carbon black-filled polyethylene matrix composites below the percolation threshold is discussed with the hopping conduction model. This study investigates the electrical conduction property of the composites below the percolation threshold based on the frequency dependence of conductivity in the range of 20 Hz to 1 MHz. There are two components for the observed ac loss current. One is independent of frequency that becomes prevalent in low frequencies just below the percolation threshold and under a high electrical field. The other is proportional to the frequency of the applied ac voltage in high frequencies and its origin is not clear. These results support the conclusion that the electrical conduction mechanism below the percolation threshold is tunneling.
It is necessary to develop new methods to prevent catastrophic failure of structural material in order to avoid accidents and conserve natural and energy resources. Design of intelligent materials with a self-diagnosing function to prevent fatal fracture of structural materials was achieved by smart composites consisting of carbon fiber tows or carbon powders with a small value of ultimate elongation and glass fiber tows with a large value of ultimate elongation. The changes in electrical resistance of CF-GFRP/GFRP (carbon fiber and glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased abruptly with increasing strain, and a tremendous change was seen at the transition point where carbon fiber tows were broken. Therefore, the composites were not to monitor damage from the early stage. On the other hand, the change in electrical resistance of CP-GFRP/GFRP (carbon powder dispersed in glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased almost linearly in proportion to strain. CP-GFRP/GFRP composites are superior to CF-GFRP/GFRP composites in terms of their capability to monitor damage by measuring change in electrical resistance from the early stage of damage. However, the former was inferior to the latter as an application because of the difficulties of mass production and high cost. A method based on monitoring damage by measuring changes in the electrical resistance of structural materials is promising for improved reliability of the material.
Temperature dependency of resistivity of the carbon black-polyethylene composites below and above percolation threshold is studied based on the electrical conduction mechanism. Temperature coefficient of resistance of the composites below percolation threshold changed from minus to plus, increasing volume fraction of carbon black; this trend decreased with increasing volume fraction of carbon black. The temperature dependence of resistivity of the composites below percolation threshold can be explained with a tunneling conduction model by incorporating the effect of thermal expansion of the composites into a tunneling gap. Temperature coefficient of resistance of the composites above percolation threshold was positive and its absolute value increased with increasing volume fraction of carbon black. By assuming that the electrical conduction through percolating paths is a thermally activated process and by incorporating the effect of thermal expansion into the volume fraction of carbon black, the temperature dependency of the resistivity above percolation threshold has been well explained without violating the universal law of conductivity. The apparent activation energy is estimated to be 0.14 eV.
The knowledge of grain growth of carbide particles is very important for manufacturing micrograined cemented carbides. In the present study, continuous and discontinuous grain growth in WC-Co and WC-VC-Co cemented carbides is investigated using the Monte Carlo computer simulation technique. The Ostwald ripening process (solution/re-precipitation) and the grain boundary migration process are assumed in the simulation as the grain growth mechanism. The effects of liquid phase fraction, grain boundary energy and implanted coarse grain are examined. At higher liquid phase content, mass transfer via solid/liquid interfaces plays a major role in grain growth. Growth rate of the implanted grain was higher than that of the matrix grains through solution/re-precipitation and coalescence with neighboring grains. The results of these simulations qualitatively agree with experimental ones and suggest that distribution of liquid phase and carbide particle/carbide grain boundary energy as well as contamination by coarse grain are important factors controlling discontinuous grain growth in WC-Co and WC-VC-Co cemented carbides. The contamination by coarse grains must by avoided in the manufacturing process of fine grain cemented carbides, especially with low Co.