The oral microbiome plays a vital role in maintaining oral and overall health and affects immune responses, digestion, and pathogen suppression. While most studies focus on age groups prone to specific conditions, such as dental caries in children or periodontal disease in older adults, limited data exist on preschool-aged children and young adults. This study investigates the composition and diversity of the oral microbiome between these age groups for enhanced understanding of a healthy oral microbiome. Microbial samples from the supragingival regions of 41 children and 31 young adults in Korea were analyzed using 16S rRNA gene sequencing. Alpha and beta diversity were assessed, and linear discriminant analysis effect size (LEfSe) identified taxa with significant differences in abundance between the groups. No significant differences in alpha diversity were observed between children and young adults however, beta diversity analysis revealed notably compositional differences. At the phylum level, Firmicutes were more abundant in children, whereas Actinobacteria were more prevalent in young adults. Genera such as Veillonella and Lautropia were more abundant among children, whereas Haemophilus and Rothia were more common among young adults. LEfSe analysis identified Veillonella rogosae and Lautropia mirabilis as more abundant in children, whereas Haemophilus parainfluenzae and Rothia dentocariosa were more prevalent in young adults. The observed differences suggest that children’s microbiomes are associated with biofilm development, while young adults’ microbiomes involve biofilm maturation and immune modulation. These findings highlight the age-related shift in oral microbiome composition, emphasizing the importance of monitoring these changes to support long-term oral health.
Endoplasmic reticulum (ER) stress, caused by the accumulation of misfolded or unfolded proteins, activates the unfolded protein response to maintain cellular homeostasis and is implicated in bacterial infections. This study investigated ER stress activation in THP-1-derived macrophages infected with oral bacteria Porphyromonas gingivalis , Prevotella intermedia , Aggregatibacter actinomycetemcomitans , and Streptococcus oralis at an multiplicity of infection of 50 for 4 hours. mRNA and protein expressions related to ER stress were analyzed by real-time polymerase chain reaction and Western blot, while pro-inflammatory cytokines were measured using enzymelinked immunosorbent assay. P. gingivalis induced the highest mRNA expression of XBP1 and PERK, whereas A. actinomycetemcomitans showed elevated GRP78, ATF6, IRE1α, ATF4, and CHOP. P. intermedia strongly expressed PERK, while S. oralis showed higher GRP78, PERK, ATF4, and CHOP expression. Protein analysis revealed S. oralis had the highest phosphorylation levels of eIF2α and IRE1α, while CHOP was most highly expressed in P. intermedia . Pro-inflammatory cytokine expression showed P. intermedia and P. gingivalis elicited the most TNF-α, while P. gingivalis induced the highest IL-1β levels. These findings suggest oral bacteria induce varying levels of ER stress, influencing the progression of oral infectious diseases. Targeting ER stress could offer therapeutic potential for managing inflammatory conditions like periodontitis.
Streptococcus mutans and Streptococcus sobrinus play important roles in dental caries. Coptis chinensis is a natural product with antimicrobial activity against enterobacteria; however, its effects on oral streptococci are still unknown. Therefore, the effects of C. chinensis on the growth and biofilm formation of the representative cariogenic bacteria S. mutans and S. sobrinus were investigated for the possible use of C. chinensis as an anticaries agent. The C. chinensis extract was diluted with sterile distilled water, and 0.1–2.5% of the extract was used in the experiment. The effects of the C. chinensis extract on the growth and glucan formation of S. mutans and S. sobrinus were measured by viable cell counting and spectrophotometry at 650 nm absorbance, respectively. Crystal violet staining was also carried out to confirm the C. chinensis extract’s inhibitory effect on biofilm formation. The C. chinensis extract significantly inhibited the growth of S. mutans and S. sobrinus at concentrations of ≥ 0.3% as compared with the control group. The viable cell count of colonies decreased by 1.7-fold and 1.2-fold at 2.5% and 1.25%, respectively, compared with the control group. The biofilm formation of S. mutans and S. sobrinus was inhibited by > 20-fold at C. chinensis extract concentrations of ≥ 1.25% as compared with the control group. In summary, the C. chinensis extract inhibited the growth and biofilm and glucan formation of S. mutans and S. sobrinus . Therefore, C. chinensis might be a potential candidate for controlling dental caries.
“Neulbora” is a new leaf vegetable perilla (Perilla frutescens (L.) Britton) variety developed from a cross between Ipdeulkkae1/YCPL173 and YCPL199 at the Yeongnam Agricultural Research Institute, NICS, RDA, in 2005. Wrinkled leaf shape and purple color o
“Saebora” is a new leaf vegetable perilla (Perilla frutescens (L.) Britton) variety developed from a cross between “Ipdeulkkae1” and YCPL199 at the Yeongnam Agricultural Research Institute, NICS, RDA, in 2004. Purple backside leaf color is a very importan
“Jungsanbyeo” is a japonica rice cultivar developed from a cross between Sambaegbyeo and Milyang107 by Sangju Substation of National Yeongnam Agricultural Experiment station, RDA in 2000. The cultivar is early matured with heading date of July 30 ordinary
Munjangbyeo' is a japonica rice cultivar developed from a cross between Sangsanbyeo and Suweon 397 by Sangju Substation of National Yeongnam Agricultural Experiment Station, RDA in 1999. The cultivar is early matured with heading date of Aug. 2 in ordinar
Nonghobyeo', was derived from a mutant of Milyang 95, by pure line selection method, which was developed from the single cross between Chukei 1016 and Milyang 79, by the rice breeding team of National Yeongnam Agricultural Experiment Station (NYAES) in 19