Insect cuticular melanization is regulated by the prophenoloxidase (proPO)- activating system, which is also involved in the innate immune reaction. Here, we demonstrate how the differentiation of the proPO-activating system is regulated toward a cuticular melanization or innate immunity function in silkworm (Bombyx mori) pupae. Our results indicate that the differential and spatial regulation of key components, such as the proPO-activating factor, tyrosine hydroxylase, and porPOs, primes the proPO-activating system for either cuticular melanization or innate immunity. This dual strategy for cuticular melanization in development and innate immunity upon infection demonstrates a two-pronged defense mechanism that is mediated by the priming of the proPO system.
A MnSOD gene was cloned from the fall webworm, H. cunea. The MnSOD cDNAs encode precursor proteins of 215 amino acid residues. The deduced amino acid sequences of the H. cunea MnSOD cDNA showed 76% identity to B. mori MnSOD and 62-56% to MnSOD sequences from other organisms. MnSOD and Cu/ZnSOD in H. cunea is expressed from all tissues. MnSOD expression is changed at a trace level in infected larvae, while Cu/ZnSOD expression is strongly changed against bacteria, and fungi. The expression level of Cu/ZnSOD increased by different artificial photoperiod (24L:0D), UV irradiation (312nm), and starvation condition, while the expression level of MnSOD only increased by starvation condition. Also, expression of MnSOD and Cu/ZnSOD showed no significant change in 0L:24D condition. In addition to expression levels of Cu/ZnSOD in H. cunea significantly increased by temperature stress and injection with paraquat, but reduced by injection with 10% H2O2. The expression level of MnSOD significantly increased by temperature stress and reduced by injection with 10% H2O2 and paraquat.
Apolipophorin-III (apoLp-III) is a hemolymph protein whose function is to facilitate lipid transport in an aqueous medium in insects. Recently, apolipophorin-III in Galleria mellonella and Hyphantria cunea was shown to play an unexpected role in insect immune activation. We show here a novel possible function/role of the apoLp-III in insects. To investigate the genes which have a relationship with apoLp-III in fall webworm larvae, we reduced endogenous Hc apoLp-III mRNA levels in larvae via RNA interference (RNAi). The RNAi-mediated Hc apoLp-III reduction resulted in the reduction of antioxidants, like MnSOD, catalase, and glutathione S transferase as well as immune proteins. In particular, expression of MnSOD commonly decreased in fat body, midgut, and hemocytes following the knockdown of Hc apoLp-III, which induced an elevated level of superoxide anion in Hyphantria cunea larvae. The observed effect of Hc apoLp-III RNAi suggests that Hc apoLp-III is related to the action/expression of antioxidants, especially MnSOD.
A new insect member of the STAT family of transcription factors (HcSTAT) has been cloned from the lepidopteran, Hyphantria cunea. The domain involved in DNA interaction and the SH2 domain are well conserved. The gene is transcribed at a low level during all stages of development, and transcribed in hemocyte, fat body, midgut, epidermis, and Malpighian tubule. Especially, hemocyte and Malpighian tubule showed transcriptional activation of HcSTAT upon Gram-negative and -positive bacteria challenge. Gram-negative and -positive bacteria challenge specifically results in nuclear translocation of HcSTAT protein and induction of DNA-binding activity that recognizes a STAT target site in H. cunea hemocyte. In vivo treatment with sodium orthovanadatetranslocates HcSTAT to the nucleus in hemocyte cells.
Reactive oxygen species (ROS) is toxic to living organisms, because its high reactivity causes oxidative damage to proteins, nucleic acids, and lipids. Superoxide dismutase (SOD) is an enzyme facilitating the removal of superoxide anions from living organisms. This study focused on the cloning of MnSOD cDNA from Hyphantria cunea and its induction upon bacterial infection and various stresses. The open reading frame of MnSOD is composed of 645 bp, encoding 215 amino acid residues. The theoretical molecular mass and pI of putative MnSOD was evaluated to be 24276 Da and 9.14, respectively. The MnSOD from H. cunea is highly similar to human MnSOD (59.5%) as well as Bombyx mori MnSOD (76.2%). MnSOD showed no big induction upon bacterial infection and stresses, compared to that of Cu/ZnSOD.
Apolipophorin-Ⅲ (apoLp-Ⅲ) is a hemolymph protein whose function is to facilitate lipid transport in an aqueous medium in insect. Recently, apolipophorin-Ⅲ in Galleria mellonella and Hyphantria cunea was shown to play an unexpected role in insect immune activation. We show here a novel possible function/role of apoLp-Ⅲ in insects. To investigate the genes which have a relationship with apoLp-Ⅲ in fall webworm larvae, we reduction of endogenous Hc apoLp-Ⅲ mRNA levels in larvae via RNA interference (RNAi). The RNAi-mediated Hc apoLp-Ⅲ reduction resulted in the reduction of antioxidants, like MnSOD, catalase, and glutathione S transferase as well as immune proteins. In particular, expression of MnSOD commonly decreased in fat body, midgut, and hemocytes following the knockdown of Hc apoLp-Ⅲ, which induced an elevated level of superoxide anion in H. cunea larvae. The observed effect of Hc apoLp-Ⅲ RNAi suggests that Hc apoLp-Ⅲ is related to the action/expression of antioxidants.
Innate immunity responses are triggered by the immune challenge and therefore involve signaling processes. The cellular response is initiated by hemocytes and mainly involves phagocytosis and encapsulation of intruders by these cells. To address whether Hc-STAT is activated upon bacterial challenge, we examined the subcellular location of STAT protein in hemocyte by immunostaining. A new insect member of the STAT family of transcription factors (Hc-STAT) has been cloned from the lepidopteran, Hyphantria cunea. The domain involved in DNA interaction and the SH2 domain are well conserved. The gene is transcribed at a low level during all stages of development, and the protein is present in hemocytes, fat body, midgut, epidermis, and Malphigian tuble (Mt). Especially, hemocytes and Mt showed transcriptional activation of Hc-STAT upon Gram (-) bacteria and fungal challenge. Gram (-) bacteria and fungal challenge specifically results in nuclear translocation of Hc-STAT protein and induction of DNA-binding activity that recognizes a STAT target site in H. cunea hemocyte. In vitro treatment with pervanadate translocates Hc-STAT to the nucleus in hemocyte cells. Here we report the first evidence for the involvement hemocyte JAK/STAT pathway upon microbial infection in lepidopteran insect.
We have determined the complete mitochondrial genome of the yellow-spotted long horned beetle, Psacothea hilaris (Coleoptera: Cerambycidae), an endangered insect species in Korea. The 15,856-bp long P. hilaris mitogenome harbors gene content typical of the animal mitogenome and a gene arrangement identical to the most common type found in insect mitogenomes. As with all other sequenced coleopteran species, the 5-bp long TAGTA motif was also detected in the intergenic space sequence located between tRNASer (UCN) and ND1 of P. hilaris. The 1,190-bp long non-coding A+T-rich region harbors an unusual series of seven identical repeat sequences of 57-bp in length and several stretches of sequences with the potential to form stem-and-loop structures. Furthermore, it contains one tRNAArg-like sequence and one tRNALys-likes equence. Phylogenetic analysis among available coleopteran mitogenomes using the concatenated amino acid sequences of PCGs appear to support the sister group relationship of the suborder Polyphaga to all remaining suborders, including Adephaga, Myxophaga, and Archostemata. Among the two available infraorders in Polyphaga, a monophyletic Cucujiformia was confirmed, with the placement of Cleroidea as the basal lineage for Cucujiformia. On the other hand, the infraorder Elateriformia was not identified as monophyletic, thereby indicating that Scirtoidea and Buprestoidea are the basal lineages for Cucujiformia and the remaining Elateriformia.
Metamorphosis is a development process involving the programmed cell death of obsolete larval organs. Aspartic proteinase cathepsin D (BmCatD) is involved in the silkworm Bombyx mori metamorphosis. Here we show a novel functional role of cysteine proteinase cathepsin B during B. mori metamorphosis. The B. mori cathepsin B (BmCatB) was expressed in the fat body, epidermis, ovary, testis, and hemocyte of the larval and pupal stages. The BmCatB was ecdysoneinduced, expressed in the fat body of the molting, the final larval instar and pupal stages, and its expression led to programmed cell death. RNA interference (RNAi)-mediated BmCatB knock-down inhibited the programmed cell death of larval and pupal fat body, resulting in the arrest of larval-pupal transformation. BmCatB RNAi is up-regulated the expression of BmCatD. Based on these results we concluded that BmCatB is critically involved in the histolysis of the larval and pupal fat body, indicating that BmCatB and BmCatD are mutally regulated during silkworm metamorphosis.
Reactive oxygen species (ROS) is toxic to living organisms, because its high reactivity causes oxidative damage to proteins, nucleic acids, and lipids. Superoxide dismutase (SOD) is an enzyme facilitating the removal of superoxide anions from living organisms. This study focused on the cloning of MnSOD cDNA from Hyphantria cuneaand its induction upon bacterial infection and various stresses. The open reading frame of MnSOD is composed of 645 bp, encoding 215 amino acid residues. The theoretical molecular mass and pI of putative MnSOD was evaluated to be 24276 Da and 9.14, respectively. The MnSOD from H. cunea is highly similar to human MnSOD (59.5%) as well as Bombyx mori MnSOD (76.2%). MnSOD showed no big induction upon bacterial infection and stresses, compared to that of Cu/ZnSOD.
Innate immunity responses are triggered by the immune challenge and therefore involve signaling processes. The cellular response is initiated by hemocytes and mainly involves phagocytosis and encapsulation of intruders by these cells. To address whether Hc-STAT is activated upon bacterial challenge, we examined the subcellular location of STAT protein in hemocyte by immunostaining. A new insect member of the STAT family of transcription factors (Hc-STAT) has been cloned from the lepidopteran, Hyphantria cunea. The domain involved in DNA interaction and the SH2 domain are well conserved. The gene is transcribed at a low level during all stages of development, and the protein is present in hemocytes, fat body, midgut, epidermis, and Malphigian tuble (Mt). Especially, hemocytes and Mt showed transcriptional activation of Hc-STAT upon Gram (-) bacteria and fungal challenge. Gram (-) bacteria and fungal challenge specifically results in nuclear translocation of Hc-STAT protein and induction of DNA-binding activity that recognizes a STAT target site in H. cunea hemocyte. In vitro treatment with pervanadate translocates Hc-STAT to the nucleus in hemocyte cells. Here we report the first evidence for the involvement hemocyte JAK/STAT pathway upon microbial infection in lepidopteran insect.
Bacillus thuringiensis kurstaki와 aizawai의 내독소단백질을 알카리용액 또는 트립신, 곤충소화액 드응ㄹ 처리하여 전기영동한 후 단백질팬턴을 비교하였다. 두 균주의 주요 결정단백질은 130kd와 64kd의 단백질이었으며, 소화액이나 효소로 처리한 경우 공통적으로 62kd의 활성독소가 생성되었다. 그러나, aizawai는 kurstaki에 비해 현저히 적은 양의 62kd 단백질을 생성하였다. 흰불나방의 유충이 Bacillus thuringiensis 독소를 섭식하였을 때 지방체를 비롯한 몇 가지 조직에서 45kd의 스트레스 단백질이 유발되었는데 이 단백질은 열충격이나 저온 충격시에도 마찬가지로 생성되었다.