검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of supplemental lighting (SL) timing on vegetative growth and the photosynthetic assimilation rate of young Cymbidium hybrids were examined. Nine month old C. ‘Yang Guifei’ and ‘Wine Shower’ were treated with four different SL timings: 22:00 – 02:00 (middle of the night, MN); 17:00 – 21:00 (end of day extension, DE); 07:00 – 09:00 plus 17:00 – 19:00 (both beginning and end of the night as split day extension, SDE), and non SL (8/16 h, short day, SD) for 4 months. All SL were provided by two types of 100% red LEDs (640 and 660 nm), with 150 μmol・m-2 ・s-1 and 800 μmol・mol-1 of CO2 supplied during the night (16 h). Pseudobulb diameters were significantly higher under SL treatments compared with the SD of both cultivars, irrespective of SL timing. Net photosynthetic assimilation rates were enhanced with increased SL, due to the additional photosynthesis and reduction of dark respiration. Thus, daily net photosynthetic amounts of SL treatments effectively increased photosynthesis compared to the SD. These results indicate that SL helps promote vegetative growth by enhancing photosynthesis. Since there were no significant differences among the SL timings when CO2 was provided uniformly during the night, we concluded that growth and photosynthesis of young Cymbidium do not depend on the timing of SL application, but are related to the daily light integrals, which is the amount of photosynthetically active photons delivered over 24 hours.
        4,000원
        3.
        2014.04 구독 인증기관·개인회원 무료
        The Riptortus-Burkholderia symbiosis is a newly emerging insect-bacterium symbiotic system. This symbiosis system has a good merit as an experimental model system to produce the non-symbiotic (apo) and symbiotic (sym) host insect. In recent reported papers, the symbionts play important biological roles for the host insects. Meanwhile, juvenile hormone (JH) is one of major hormone synthesized corpora allata(CA) to control many physiology of insect. However, the study for cross-talk mechanism between symbionts and host hormones to control important physiological phenomenon of insects is almost none. In this study, we found that Riptortus speed up adult emerging and increase egg laying on presence of symbiont Burkholderia. Also we found that hexamerin proteins, which were controlled the expression by JH, were accumulated in sym-Riptortus hemolymph compare with apo-Riptortus. According as combined results, we hypothesized that the gut symbiont Burkholderia can control JH titer to conclude out beneficial effects such as development and reproduction of R. pedestris. To verify this hypothesis, we examined measurement of JH titer, expression of hexamerins as JH response genes and RNAi for hexamerin protein during whole Riptortus life on presence or absence of symbiont Burkholderia. All results demonstrated that gut symbiont controlled JH titer of Riptortus. Controlled JH amount by symbiont Burkholderia in host midgut regulated hexamerin protein expression for speeding up adult emerging and increasing egg production.