Nicotinamide (NAM), a water-soluble derivative of vitamin B3, has emerged as a potential therapeutic agent for bonerelated disorders. In particular, it promotes bone metabolism and alleviates delayed tooth eruptions associated with cleidocranial dysplasia (CCD). NAM serves as a precursor for nicotinamide adenine dinucleotide, a key coenzyme involved in cellular metabolism that plays an essential role in oxidative phosphorylation and mitochondrial function. Recent research has highlighted the capacity of NAM to enhance osteogenic differentiation and regulate the interaction between osteoblasts and osteoclasts, which is critical for maintaining bone homeostasis. Moreover, the effect of NAM in preventing delayed tooth eruptions in CCD models underscores its potential as a noninvasive therapeutic option. Considering its safety profile and therapeutic potential, NAM is a promising candidate for longterm treatment of bone diseases and prevention of age-related bone disorders.
In this study, an experimental analysis of noise reduction in road traffic by applying the Micro Grooving technique to concrete highway pavements is explored. Initiated in 1984 to address the aging and damage issues observed in South Korea's concrete highways, Micro Grooving is known for creating fine grooves on the cement pavement surface to increase friction, prevent hydroplaning, and inhibit ice formation, while reducing vehicle friction noise by 3∼5dB(A). It is determined from noise measurement results that the application of the Micro Grooving method can be expected to reduce roadside noise and enhance the safety of drivers' driving experience.
Noise is unwanted sound and nerve jarring sound or mentally and physically harmful sound to the human body. In the 20th century, the aviation industry have been comprehensive industry of all areas and humanity have been globalized, the number of aircraft operated have been increased continuously. We confirmed that the actual measured noise data was consistent with the aircraft average noise data to calculate noise maps of INM version 7.0. and based on this, the actual flight scenarios and the noise map were created. For making the noise map, we assumed that the maximum number of flight is operated.
Interferon-stimulated gene 15 (ISG15) is known to interfere with viral replication and infection by limiting the viral infection of cells. Interferon-stimulated gene 15 (ISG15) interferes with viral replication and infectivity by limiting viral infection in cells. It also plays an important role in the immune response. In this study, tissue-specific expression of ISG15 in healthy rock bream samples and spatial and temporal expression analysis of rock bream ISG15 (RbISG15) were performed following rock bream iridovirus (RSIV) infection. RbISG15 expression was significantly higher in the eye, gill, intestine, kidney, liver, muscle, spleen, and stomach, but low in the brain. There were particularly high levels of expression in the liver and muscle. RbISG15 expression was also examined in several tissues and at various times following RSIV infection. ISG15 expression increased within 3 h in the whole body and decreased at 24 h after infection. In addition, temporal expression of several tissues following RSIV infection showed a similar pattern in the muscle, kidney, and spleen, increasing at 3 h and decreasing at 72 h. These results suggest that ISG15 plays an important role in the immune response of rock bream. Overall, this study characterizes the response of RbISG15 following RSIV infection.
Lectins belong to the pattern-recognition receptors (PRRs) class and play important roles in the recognition and elimination of pathogens via the innate immune system. Recently, it was reported that lily-type lectin-1 is involved when a pathogen attacks in the early immune response of fish. However, this study is limited to information that the lectin is involved in the innate immune response against viral infection. In the present study, the lily-type lectin-2 and -3 of Oplegnathus fasciatus (OfLTL-2 and 3) have been presented to be included B-lectin domain and two D-mannose binding sites in the amino acid sequence that an important feature for the fundamental structure. To investigate the functional properties of OfLTLs, the tissue distribution in the healthy rock bream and temporal expression during early developmental stage analysis are performed using quantitative real-time PCR. OfLTL-2 and 3 are predominantly expressed in the liver and skin, but rarely expressed in other organ. Also, the transcripts of OfLTLs are not expressed during the early developmental stage but its transcripts are increased after immune-related organs which are fully formed. In the challenge experiment with RBIV (rock bream iridovirus), the expression of OfLTLs was increased much more strongly in the late response than the early, unlike previously known. These results suggest that OfLTLs are specifically expressed in the immune-related tissues when those organs are fully formed and it can be inferred that the more intensively involved in the second half to the virus infection.
Serine-arginine-rich nuclear protein LUC7L plays an important role in the regulation of myogenesis in mice. In the present study, we isolated and characterized the Korean rose bitterling Rhodeus uyekii Luc7l cDNA, designated RuLuc7l. The RuLuc7l cDNA is 1,688 bp long and encodes a 364-amino-acid polypeptide containing serine/arginine-rich region at the C-terminus. The deduced RuLuc7l protein has high amino acid identity (71-97%) with those of other species including human. Phylogenetic analysis revealed that RuLUC7L clustered with fish LUC7L proteins. The expression of RuLuc7l mRNA was high in the brain, kidney, and stomach of Korean rose bitterling. Expression of the RuLuc7l mRNA was detected from 1 day post-fertilization (dpf) and moderately increased until 21 dpf during the early development. Further investigations are required to elucidate the functional role of RuLUC7L in myogenesis in R. uyekii.