본 연구는 자율주행상황에서 주관적인 운전 준비도를 객관적으로 측정할 수 있는 심리⋅생리적 지표를 확인하는 것을 목적으로 한다. 51명의 연구대상자가 참여하였고, 설문을 통해 운전 경험, 태도, 운전부하, 상황인식 등을 평가 하였다. 자율주행 중 차량 제어권을 인계받아야 하는 시나리오 동안 심전도를 측정하여 심박변이도 지표를 추출하였 고, 주행 종료 후 연구대상자는 자신의 상태를 평가하였다. 분석 결과, 운전 준비도는 정신적 부하와 부적 상관, 상황 인식과 상황 이해도와는 정적 상관을 보였다. 또한, 심박변이도 지표인 제곱 평균 근간 심박 간격 차이(Root Mean Square of Successive Differences, RMSSD)와 50ms 이상의 연속적인 RR 간격의 차이 비율(proportion derived NN50 by the total number of NN interval, pNN50)과의 유의한 정적 상관관계가 확인되었다. 운전 준비도 수준에 따라 상⋅중⋅하로 나누어 분석한 결과, 높은 운전 준비도 집단은 정신적 부하가 낮고 상황인식 및 상황에 대한 이해 도가 유의하게 높았으며, 자율주행 구간에서 pNN50이 높은 경향이 있었다. 마지막으로 상황인식과 RMSSD가 운전 준비도의 주요 예측 지표로 확인되었다. 이는 운전 준비도가 낮은 운전자는 자율신경 각성이 높고, 높은 운전자는 부교감신경계의 활성화로 인해 심리적, 생리적으로 안정된 상태임을 의미한다. 본 연구는 운전자의 주관적인 운전 준비도를 예측하기 위한 운전자의 심리 및 생리 지표를 확인하였고, 이는 운전자의 운전 준비 상태를 모니터링하는 기술에 적용되어 사고 예방에 기여할 수 있을 것이다.
Since the gene expression interference induced by dsRNA was discovered, dsRNA has been considered as an antiviral agent and pesticide to protect beneficial insects and crops, respectively. Recently, dsRNA was classified as IRAC mode of action group 35, and the first dsRNA pesticide, Calatha of GreenLight Bioscience, has been approved by EPA. Also an animal drug for Asian honeybee, HoneyGuard-R of Genolution is about to be approved by APQA. During the last two decades, hundreds of papers already had demonstrated the application and capability of dsRNA for agriculture, however, we have just a few commercialized products at hand at this moment. It is time to understand the processes, hurdles and limitations on the industry side that are indispensable for the development, registration and commercialization of dsRNA-based products.
Nucleopolyhedrovirus (NPV), which belongs to Baculoviridae, is a rod-shaped, double-stranded circular DNA virus which infects arthropods, mostly insects. NPVs are highly species-specific, and make unique crystalline polyhedral structure made of polyhedrin protein. The NPVs do not replicate in mammalian cells, are safe to human, and can be observed the viral replication with conventional compound microscope, plus the availability of susceptible insect cell lines, therefore, the NPVs became an ideal model system to study basic virology.
Also, NPVs became popular because of its applications for baculovirus expression vector system (BEVS). A foreign gene will be cloned into a shuttle vector, and introduced to the NPV chromosome to make recombinant virus. This NPV will produce the protein in culture cells or host insects under the control of the strong polyhedrin promoter. So far, the commercially available BEVS has been widely used because of its high efficiency and eukaryotic characteristics, however, the hidden bottleneck is finding new useful genes which will maximize the capability of BEVS.
Since the human genome project, next generation sequencing technique (NGS) is getting useful in life science field along with the development of sequence analysis algorithms and increase of computational power. Especially, RNA-seq and de novo sequence assembly technics make discovery of new genes easier even in a non-model species with a proteomics approach, and these useful tools will be the key to catalyze the insect biotechnology.
In 1990, the human genome project had begun with three billion dollars of budget, and the sequencing and analysis result of the three billion base pairs of human genome was finally published in 2000 to open a new era of genomics. Since the human genome project, many other genomes of eukaryotic model organisms, such as mouse, Drosophila, Arabidopsis, C. elegance, etc., became available, and this led the development of computational biology and comparative genomics. Also, during the last decade, the speed of the nucleotide sequencing increased significantly with lower cost by next generation sequencing technology, and the computational power to handle sequence information also has grown exponentially to make possible that a genomics approach is an affordable tool for many of the biological studies. In the entomology area, the 5000 insect genome project was launched in 2011 for understanding of the biology of insects in a new dimension. Based on the recent studies of functional genomics and the new discoveries in the biological sciences, such as innate immune system, RNAi technique, insect pathogens, etc., the information from the insect genomics study will make possible to improve our capability to manage insect pests in the future.
Hz-2V, which belongs to nudiviridae, is a sexually transmitted insect virus of corn earworm, Helicoverpa zea. Hz-2V is transmitted during mating or mating attempt of infected individuals, and specifically replicates in the reproductive tissues to cause abnormal development of testes and ovary in the adult moths of next generations. The malformation of Hz-2V reproductive tissues started during the early pupal stage without clear sign of virus replication. The virus replication started at the late pupal stage to cause sterility of the emerged moths. Interestingly, the infected female moths showed a unique pathology, so called ‘waxy-plug’, which is filled with virus particles, and abnormal mating behavior while they produced 6~7 times more of pheromone than the normal female moths did. To investigate the factors of Hz-2V which control the physiological, and behavioral changes of the infected moths, the whole genome sequence of Hz-2V was determined. Bioinformatics analysis demonstrated that Hz-2V contains 113 putative ORFs including juvenile hormone esterase (JHE) and histone binding protein homologues, and a miRNA candidate which probably controls the expression of viral JHE.
Detectors utilized for nuclear material safeguards have been using scintillation detectors which are inexpensive and highly portable, and electrically cooled germanium detectors which are expensive but have excellent energy resolution. However, recently IAEA, the only international inspectorate of nuclear material safeguards for the globe, have replaced the existing scintillation detector and electrically cooled germanium detector with a CdZnTe detector owing to the improved performance of room-temperature semiconductors significantly. In this paper, we will examine the spectrum features of the CdZnTe detector such as spectrum shape, energy resolution, and efficiency in the energy region of interest, which are the important characteristics for measuring Uranium enrichment. For this purpose, it would be conducted to compare its spectrum features using CdZnTe, NaI, HPGe detectors. The main energies of interest include 185.7 keV and 1,001 keV, which are the decay energies of uranium 235 and uranium 238. The results of this study will provide a better understanding of the spectral features of various detectors used in uranium enrichment analysis, and are expected to be used as basic data for future related software development.
Detectors used for nuclear material safeguards activities are using scintillator detectors to quickly calculate the uranium enrichment at various nuclear material handling facilities. In order to measure the uranium enrichment, a region of interest is set around 185.7 keV which is the main gamma emission energy of uranium-235 in which the proportional relationship between the amount of uranium-235 and the net count is used. It is necessary to perform channel/energy calibration that a specific channel of the multi-channel analyzer is set to 185.7 keV. Most detector manufacturers have a built-in calibration source so that it is automatically performed when the detector starts to operate. In addition, the scintillator detector requires attention because the channel/energy gain may change depending on the ambient temperature so that a calibration source is used to compensate for this. In this paper, the spectral features are examined from among the scintillator detectors seeded with calibration sources used for safeguards activities. For this purpose, FLIR’s Identifinder-2 R400 T2 model and Canberra’s NAID model were used. HM-5 contains about 15nCi of Cs-137 and a photoelectric peak occurs at 662.1 keV. NAID contains about Am-241 of 55 nCi which alpha decays and subsequently emits gamma rays of 59.5 keV and 26.3 keV. The major difference among the detectors occurs in the background spectrum due to the difference in the source. From that kind of spectral features, it can be confirmed that the equipment is operating properly only when the spectrum by the corresponding calibration source is accurately known. The results of this study will enable a better understanding of the characteristics of scintillator detectors used for uranium enrichment analysis. Therefore, it is expected to be used as basic research for related software utilization as well as development in the future.