검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 20

        1.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Embryos formed in vivo were collected from 171 donors housed in Chung Cheong Buk-Do Institute of Livestock and Veterinary Research of the Chungbuk community during the years 2009∼2012. We evaluated annual embryo collection, effect of follicle stimulating hormone (FSH), controlled internal drug release (CIDR) and prostaglandin (PG) administration to the donor for superovulation and controlling the estrus cycle, seasonal effects of embryo collection and compared the number of embryos recovered as per the collection days and pregnancy rate. In all, 1,243 embryos were collected from 118 donors with an average of 7.31 ± 5.35 embryos per donor, out of which 69.4% were transferable. Dosages of FSH required for inducing superovulation in various donors were compared. Average number of embryos collected from donors administered with 30 AU of FSH (7.13 ± 5.74 per donor) was not significantly different from that of donors who were given an injection of 24 AU of FSH (7.53 ± 4.91 per donor). However, the percentage of transferable embryos in the 30AU FSH-administered group (63.2 %, 449 of 711) was higher than that in the 24AU FSH-administered group (77.8%, 414 of 532). In the group of donors under a natural estrus cycle, the FSH dose administered did not influence the number of transferable embryos produced (7.49 ± 6.25 per donor for 30 AU of FSH vs 7.49 ± 4.92 per donor for 24 AU of FSH). However, in donors administered with CIDR and PG for controlling the estrus cycle, the FSH dose affected the average number of transferable embryos collected (4.25 ± 2.87 per donor for 30 AU of FSH vs 8.50 ± 6.36 per donor for 24 AU of FSH). We collected embryos from donors 6, 7 or 8 days after artificial insemination (AI). Results showed that the percentage of transferable embryos among those collected 8 days after AI was significantly higher than that among embryos collected 6 or 7 days after AI. Seasonal variations did not affect number of recovered embryos and pregnancy rates in natural estrus cycle and CIDR treatment groups (48.28% and 42.55%) but higher than pregnancy rate of frozen embryos (19.63%). These results indicated that administration of FSH beyond a threshold dose (at least 24 AU) has no beneficial effect on the production embryos and that collection of embryos 7∼8 days after AI is optimal for embryo recovery. CIDR treatment induced superovulation in short term and had no influence on the natural estrus cycle. Finally, although good-quality embryos were transferred, freezing significantly reduced the pregnancy rates after transfer.
        4,000원
        2.
        2013.12 구독 인증기관 무료, 개인회원 유료
        In mammal, unfertilized oocytes remain in the oviduct or under in vitro culture, which is called "oocyte aging". This asynchrony negatively affects fertilization in pre- and post-implantation embryo development. Caffeine a phos-phodiesterase inhibitor is known to rescue oocyte aging in several species. The objective of this study is to determine the cytoskeleton distribution in aged oocytes and the embryo developmental ability of aged oocytes in the present or absence of caffeine during maturation. Caffeine treatment increased the incidence of normal spindle assembly of aged oocytes (treatment, 67.57±4.11% aging, 44.61±6.4%) and no significant differences compared to control group. Fluorescence values were compared using ROS (Reactive oxidation species) stain. Fluorescence values appear of con-trol group intensity rate (51.53.±3.80), aging group (68.10±5.54) and treatment of caffeine (45.04±2.98). Aged oocytes that were derived from addition of caffeine to the IVM (in vitro maturation) medium had significantly increased 2-cell that developed to the blastocyst stage compared to the aging group. Blastocysts, derived from caffeine treatment group, significantly increased the total cell number compare aging (90.44±10.18 VS 67.88±7.72). Apoptotic fragments of genomic DNA were measured in individual embryo using TUNEL assay. Blastocyst derived from caffeine treatment group decreased significantly the apoptotic index compared to blastocyst derived from aging group. In conclusion, we inferred that the caffeine treatment during oocyte aging can improve the developmental rate and quality in bovine embryos developing in vitro
        4,000원
        3.
        2013.12 구독 인증기관 무료, 개인회원 유료
        Low efficiency of somatic cell nuclear transfer (SCNT) is attributed to incomplete reprogramming of transfered nu-clei into oocytes. Trichostatin A (TSA), histone deacetylase inhibitor and 5-aza-2’deoxycytidine (5-aza-dC), DNA methy-lation inhibitor has been used to enhance nuclear reprogramming following SCNT. However, it was not known molec-ular mechanism by which TSA and 5-aza-dC improve preimplantation embryo and fetal development following SCNT. The present study investigates embryo viability and gene expression of cloned porcine preimplantation embryos in the presence and absence of TSA and 5-aza-dC as compared to embryos produced by parthenogenetic activation. Our results indicated that TSA treatment significantly improved development. However 5-aza-dC did not improve development. Presence of TSA and 5-aza-dC significantly improved total cell number, and also decreased the apoptot-ic and autophagic index. Three apoptotic-related genes, Bak, Bcl-xL, and Caspase 3 (Casp3), and three autophagic-re-lated genes, ATG6, ATG8, and lysosomal-associated membrane protein 2 (LAMP2), were measured by real time RT-PCR. TSA and 5-aza-dC treatment resulted in high expression of anti-apoptotic gene Bcl-xL and low pro-apoptotic gene Bak expression compared to untreated NT embryos or parthenotes. Furthermore, LC3 protein expression was lower in NT-TSA and NT-5-aza-dC embryos than those of NT and parthenotes. In addition, TSA and 5-aza-dC treated embryos displayed a global acetylated histone H3 at lysine 9 and methylated DNA H3 at lysine 9 profile similar to the parthenogenetic blastocysts. Finally, we determined that several DNA methyltransferase genes Dnmt1, Dnmt3a and Dnmt3b. NT blastocysts showed higher levels Dnmt1 than those of the TSA and 5-aza-dC blastocysts. Dnmt3a is lower in 5-aza-dC than NT, NTTSA and parthenotes. However, Dnmt3b is higher in 5-aza-dC than NT and NTTSA. These results suggest that TSA and 5-aza-dC positively regulates nuclear reprogramming which result in modulation of apoptosis and autophagy related gene expression and then reduce apoptosis and autophagy. In addition, TSA and 5-aza-dC affects the acetylated and methylated status of the H3K9.
        4,200원
        4.
        2013.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to improve production efficiency of vitrified-thawed transgenic bovine embryos. Transgenic bovine embryos were produced by injection of FIV-GFP lentiviral vector into perivitelline space of in vitro matured MІІ stage oocytes, and then in vitro fertilization. EGFP-expressing transgenic bovine blastocysts were cultured in serum-containing and serum–free medium. These blsatocysts were vitrified by pull and cut (PNC) container made with 0.25 cm plastic straw. Results indicate that total developmental rates of normal IVF embryo cultured in serumcontaining and–free medium into blastocyst were not significantly different (22.3 vs 21.5%) and those of GFPexpressing transgenic bovine embryo into blastocyst showed no significant difference between serum-containing (13.9%) and–free medium (13.1%). However, developmental rate of GFP transgenic embryo was significantly (P<0.05) lower than its of normal IVF embryos. In additional study, we vitrified GFP transgenic normal bovine blastocysts using PNC vitrification method. Survival rate of vitrified-thawed GFP transgenic blastocyst (23.1%) was significantly (P<0.05) lower than its of normal blastocysts (68.9%). Although, survival rate of vitrified-thawed GFP transgenic blastocyst was lower than its of normal blastocyst, our result may suggested that PNC vitrification method is feasible to cryopreserve transgenic embryos. Our next plan will be the production of GFP express transgenic bovine derived from vitrified-thawed embryos using PNC method.
        4,000원
        5.
        2013.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the transgenic animal production technique is very important for the production of bio-parmaceutical as animal bio-reactor system. However, the absence of survival evaluation in vitro produced transgenic embryos has been a problem of the low productivity of transgenic animal because of absent of pre-estimate of pregnancy after transgenic embryos transferred into recipient. Therefore, this study is conducted to improve efficiency of transgenic cattle production by improving the non-surgical embryo transfer (ET) method. Transgenic bovine embryos were produced by injection of feline immunodeficiency virus enhanced green fluorescent protein (FIV-EGFP) lentiviral vector into perivitelline space of in vitro matured MІІ stage oocytes, and then in vitro fertilization (IVF) was occured. Normal IVF and EGFP expressing blastocysts were transferred into recipients. Results indicated that 2 expanded blastocysts (34.7%) transferred group showed significantly (P<0.05) higher pregnancy rate than 1 expanded blastocyst (26.8%) transferred group. In case of parity of recipient, ET to heifer (34.9%) showed significantly (P<0.05) higher pregnancy rate than ET to multiparous recipient (21.2%). However, there are no significant differences of pregnancy rate between natural induced estrus and artificial induced estrus groups. Significantly (P<0.05) higher pregnancy rate was obtained from recipient group which have normal corpus luteum with crown group (34.8%) than normal corpus luteum without crown (13.6%). Additionally, treatment of 100 μg Gn-RH injection to recipient group (38.6%) 1 day before ET significantly (P<0.05) increase pregnancy rate than non- Gn-RH injection to recipient group (38.6%). We also transferred 2 EGFP expressing expanded blastocysts to each 19 recipients, 7 recipients were pregnant and finally 5 EGFP transgenic cattle were produced under described ET condition. Therefore, our result suggested that transfer of 2 good-quality expanded blastocysts to 100 μg of Gn-RH injected recipient which have normal corpus luteum with crown is feasible to produce transgenic cattle.
        4,000원
        6.
        2013.06 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to examine the effects of high concentrations of glucose on porcine parthenotes developing in vitro. Addition of 55 mM glucose to the culture medium of embryos at the four-cell-stage significantly inhibited blastocyst formation, resulting in fewer cells in blastocyst-stage embryos and increased levels of apoptosis and autophagy compared to control. Quantitative reverse transcriptase (RT) PCR analysis revealed that the expression of pro-apoptotic genes (Caspase 3, Bax and Bak) and autophagy genes (Atg6 and Atg8/Lc3) were increased significantly by the addition of 55 mM glucose to the culture medium compared to control. MitoTracker Green fluorescence revealed a decrease in the overall mitochondrial mass compared to control. However, the addition of 55 mM glucose had no effect on mRNA expression of the nuclear DNA-encoded mitochondrial-related genes, cytochrome oxidase (Cox) 5a, Cox5b and Cox6b1. These results suggest that hyperglycemia reduced the mitochondrial content of porcine embryos developing in vitro and that this may hinder embryonic development to the blastocyst stage and embryo quality by increasing apoptosis and autophagy in these embryos.
        4,000원
        7.
        2012.06 구독 인증기관·개인회원 무료
        Autophagy is conserved response to starvation by which cells catabolize their components to create an internal supply of essential nutrients. Ceramide is known to induce autophagy in many cells through down-regulation of amino acid and glucose transporters. The mechanism of starvation induced-autophagy in mouse embryo remains unclear. In order to understand the mechanism by which starvation regulates autophagy, in this study, we investigated nutrient transporters expression and the effect of c2-ceramide on the in vitro development, apoptosis and autophagy via starvation in mouse embryo. Glucose transporters (Glut1 and Glut 3), high levels of transcript were expressed from 1 to 2 cells and gradually decreased through the morula and blastocyst (BL) stages. Amino acid transporters (LAT-1 and 4F2hc) gradually decreased from the zygote to the BL stage. Furthermore, the expression of nutrient transporters (Glut1, 3, LAT-1 and 4F2hc) were significantly reduced at the BL stage after ceramide treatment. Especially, mTOR expression after ceramide treatment of embryos was significantly higher than controls. Ceramide treated embryos exhibited significantly reduced developmental rates and total cell numbers, and increased apoptotic cell death at the BL stage. Consequently, we next evaluated the effect of ceramide treatment on mitochondrial number and morphology. There was a significant decrease in the average mtDNA copy number and the mitochondrial area in ceramide treated BL stage embryos. Both the expression of autophagy-related genes, Lc3, Gabarap, Atg4A and Atg4B, and the synthesis of LC3 were significantly induced at the BL stage. These results suggest that autophagy under starvation condition influences the in vitro development and apoptosis and autophagy, and may play a role in early mouse embryogenesis.
        18.
        2010.09 서비스 종료(열람 제한)
        Autophagy is an evolutionarily conserved lysosomal pathway for degrading cytoplasmic proteins, macromolecules, and organelles, in addition to recycling protein and ATP synthesis. Although programmed cell death (PCD) is very important during embryogenesis, the mechanism underlying the dynamic development during this process remains largely unknown. In order to obtain insights into autophagy and it's relation with apoptosis in early embryo development, we first evaluated LC3 gene expression levels in mouse embryos developing in vitro. qRT-PCR revealed high expression levels from 1- to 4 cell stage embryo, and then expression decreased during morula and blastocyst formation. Indirect immunocytochemistry showed protein synthesis of LC3 in these stage embryos. Introducing of autophagy inhibitor, 3-MA (2mM) significantly decreased both developmental rate (54.85±11.0%) and total cell number (n=71±8), but increased apoptosis rate (5.68± 1.9%) at the blastocyst. Real time RT-PCR confirmed reduced expression of selected autophagy related genes, including ULK1, Atg4A, B, C, D, Atg5, Atg8, Gabarap, Atg9A, B and Atg16L. Treatment of autophagy inducer, rapamycin (50 ng/㎖) increased both mRNA expression and protein synthesis of LC3 and apoptosis rate (16.11±3.42%), but decreased developmental rates (50.16±9.78) and total cell numbers (n=60±7) as compared to control developmental rate (70.74±12.9%), Total cell number (89.8±9) and apoptotic cell death (1.11±0.7%). These results suggest that autophagy is related with apoptosis in mouse embryo, which possibly give a role for early development.
        19.
        2010.09 서비스 종료(열람 제한)
        Mitochondria are important regulators of both apoptosis and autophagy. One of the triggers for mitochondrial-mediated apoptosis is the production of reactive oxygen species (ROS), which include hydrogen peroxide, superoxide, hydroxyl radical, nitric oxide, and peroxynitrite. Recently, several studies have indicated that ROS may also be involved in the induction of autophagy. In the present study, we used H2O2 to induce mitochondrial stress and examined apoptotic- and autophagic-related gene expression and observed LC3 protein (autophagosome presence marker) expression in porcine parthenotes developing in vitro. In porcine four-cell parthenotes cultured for 5 days in NCSU37 medium containing 0.4% BSA, the developmental rate and mitochondrial distribution did not differ from that of the group supplemented with 100 μM H2O2 but significantly decreased in the group supplemented with 500 μM H2O2 (P<0.05). Transmission electron microscopy (TEM) indicated that whereas normal shaped mitochondria were observed in blastocysts from the control group, abnormal mitochondria (mitophagy) and autophagic vacuoles were observed in blastocysts from the group that received 500 μM H2O2. Furthermore, addition of H2O2 (100 μM and 500 μM) decreased cell numbers (P<0.05) and increased both apoptosis (P<0.05) and LC3 protein expression in the blastocysts. Real time RT-PCR showed that H2O2 significantly decreased mRNA expression of anti-apoptotic gene Bcl-xL but increased pro-apoptotic genes, Caspase 3 (Casp3) and Bak, and autophagy-related genes, microtubule-associated protein 1 light chain 3 (Map1lc3b) and lysosomal-associated membrane protein 2 (Lamp2). However, the addition of H2O2 had no effect on mRNA expression levels in nuclear DNA-encoded mitochondrial-related genes, cytochrome oxidase (Cox) 5a, Cox5b, and Cox6b1, but decreased mitochondrial DNA-encoded genes, D-loop (Dloop) and cytochrome b (Cytb), in blastocysts. These results suggest that H2O2 leads to mitochondrial dysfunction that results in apoptosis and autophagy, which is possibly related to porcine early embryo development.
        20.
        2010.09 서비스 종료(열람 제한)
        Spc25 is a component of the Ndc80 complex which consists of Ndc80, Nuf2, Spc24, and Spc25. Previous work has shown that Spc25 is involved in regulation of kinetochore microtubule attachment, localization of Ndc80, and the spindle assembly checkpoint in mitosis. The role of Spc25 in meiosis remains unknown. Here, we report its expression, localization and functions in mouse oocyte meiosis. The Spc25 mRNA level gradually increased from the GV to MI stage, but decreased by MII during mouse oocyte meiotic maturation. Immunofluorescent staining showed that Spc25 was restricted to the germinal vesicle, and associated with chromosomes during all stages after GVBD. Overexpression of Spc25 resulted in oocyte meiotic arrest, chromosome misalignment and spindle disruption. Conversely, Spc25 RNAi resulted in precocious polar body extrusion and caused severe chromosome misalignment and aberrant spindle formation. Spc25 RNAi affected Ndc80 localization, but Ndc80 RNAi did not affect Spc25 localization.Survivin MO caused Ndc80 dispersion but did not affect localization of Spc25. Our data suggest that Spc25 is required for chromosome alignment, spindle formation, and spindle checkpoint activity through the regulation of Ndc80, but that Spc25 function is independent of survivin during meiosis.