검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It has been claimed that artificial insemination (AI) of cows with frozen-thawed semen treated with commercially produced kits, Wholemom (in favour of female gender) increases the birth chance of calves with desired sex ratio by approximately 85% without decrease of pregnancy rates. Hence, this study was conducted to investigate the efficacy of wholemom kits as combined with frozen-thawed bovine semen during in vitro fertilization on the in vitro fertilization and developmental efficiency and sex ratios such as some reproductive parameters in bovine. For this, 1,737 oocytes were in vitro fertilized and developed. Agglutination effects on bovine after treatment of Wholemom kit were observed by time passage and dose respectively. To determine sex of embryos, Bovine embryo Y-specific gene primers(ConEY) and Bovine specific universal primer(ConBV) were used as multiple PCR method. Fertilization rate of wholemom-treated group was significantly lower than its of control group[66.9% (1,156/1,737) in Wholemom-treated group; 75.0% (610/813) in control group]. However, developmental rate after fertilization of both wholemom-treated and control groups were not significantly different [26.1% (404/1,156) in Wholemom-treated group; 27.4% (224/610) in control group]. Sex ratio of in vitro fertilized embryo with frozen-thawed semen treated with wholemom kit was determined by multi PCR. Female ratio in wholemom-treated group [85.4% (173/201)] was significantly higher than its of control group [47.2% (66/141)]. In conclusion, wholemom treatments of semen used in the in vitro fertilization and development of bovine oocytes provided increase in female ratio with decrease of fertilization rate.
        4,000원
        2.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bovine colostrum is necessary for newborn calves to survive, grow and receive immunity from their mother. Cows in Korea produce about 35kg of colostrum, 4Kg of which is fed to the calf, and the rest is discarded. The bovine colostrum causes the harmful side effects to human, such as allergies and digestive problems; so, it is prohibited by law to consume colostrum itself as a food. However, many scientific research data have suggested that components in the colostrum can improve human health and has the ability to help treat diseases. In line with the trend of food and pharmacy industries using natural product materials, which attract positive attention, recently, some ingredients in colostrum have been used in the production of food supplements, and it has been used in its raw form in some cosmetics. This review introduces the active ingredients and physiologically active substances contained in bovine colostrum, summarizes the efficacy of physiological enhancement of the colostrum, which has been proven by scientific methods to date, and also suggests the possibility of industrial applications of colostrum as an animal-derived natural material.
        4,000원
        3.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to develop transgenic cell line expressing targeted human granulocyte colony stimulating factor (hGCSF) and green fluorescence protein (GFP) genes as well as production of Somatic Cell Nuclear Transfer (SCNT) embryos derived from co-expressed transgenic donor cells. Constructed pPiggy-mWAP-hGCSF-EF1-GFP vector was chemically transfected into bovine fetus cells and then, only GFP expressed cells were selected as donor cells for SCNT. Cleavage and blastocyst rates of parthenogenetic, SCNT embryos using non-TG cell and hGCSF-GFP dual expressed SCNT embryos were examined (cleavage rate: 78.0±2.8 vs. 73.1±3.2 vs. 70.4±4.3%, developmental rate: 27.2 ±3.2 vs. 21.9±3.1 vs. 17.0±2.9%). Result indicated that cleavage and blastocyst rates of TG embryos were significantly lower (P<0.05) than those of parthenogenetic and non-TG embryos, respectively. In this study, we successfully produced hGCSF-GFP dual expressed SCNT embryos and cryopreserved to produce transgenic cattle for bioreactor system purpose. Further process of our research will transfer of transgenic embryos to recipients and production of hGCSF secreting cattle.
        4,000원
        4.
        2013.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to improve production efficiency of vitrified-thawed transgenic bovine embryos. Transgenic bovine embryos were produced by injection of FIV-GFP lentiviral vector into perivitelline space of in vitro matured MІІ stage oocytes, and then in vitro fertilization. EGFP-expressing transgenic bovine blastocysts were cultured in serum-containing and serum–free medium. These blsatocysts were vitrified by pull and cut (PNC) container made with 0.25 cm plastic straw. Results indicate that total developmental rates of normal IVF embryo cultured in serumcontaining and–free medium into blastocyst were not significantly different (22.3 vs 21.5%) and those of GFPexpressing transgenic bovine embryo into blastocyst showed no significant difference between serum-containing (13.9%) and–free medium (13.1%). However, developmental rate of GFP transgenic embryo was significantly (P<0.05) lower than its of normal IVF embryos. In additional study, we vitrified GFP transgenic normal bovine blastocysts using PNC vitrification method. Survival rate of vitrified-thawed GFP transgenic blastocyst (23.1%) was significantly (P<0.05) lower than its of normal blastocysts (68.9%). Although, survival rate of vitrified-thawed GFP transgenic blastocyst was lower than its of normal blastocyst, our result may suggested that PNC vitrification method is feasible to cryopreserve transgenic embryos. Our next plan will be the production of GFP express transgenic bovine derived from vitrified-thawed embryos using PNC method.
        4,000원
        5.
        2013.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the transgenic animal production technique is very important for the production of bio-parmaceutical as animal bio-reactor system. However, the absence of survival evaluation in vitro produced transgenic embryos has been a problem of the low productivity of transgenic animal because of absent of pre-estimate of pregnancy after transgenic embryos transferred into recipient. Therefore, this study is conducted to improve efficiency of transgenic cattle production by improving the non-surgical embryo transfer (ET) method. Transgenic bovine embryos were produced by injection of feline immunodeficiency virus enhanced green fluorescent protein (FIV-EGFP) lentiviral vector into perivitelline space of in vitro matured MІІ stage oocytes, and then in vitro fertilization (IVF) was occured. Normal IVF and EGFP expressing blastocysts were transferred into recipients. Results indicated that 2 expanded blastocysts (34.7%) transferred group showed significantly (P<0.05) higher pregnancy rate than 1 expanded blastocyst (26.8%) transferred group. In case of parity of recipient, ET to heifer (34.9%) showed significantly (P<0.05) higher pregnancy rate than ET to multiparous recipient (21.2%). However, there are no significant differences of pregnancy rate between natural induced estrus and artificial induced estrus groups. Significantly (P<0.05) higher pregnancy rate was obtained from recipient group which have normal corpus luteum with crown group (34.8%) than normal corpus luteum without crown (13.6%). Additionally, treatment of 100 μg Gn-RH injection to recipient group (38.6%) 1 day before ET significantly (P<0.05) increase pregnancy rate than non- Gn-RH injection to recipient group (38.6%). We also transferred 2 EGFP expressing expanded blastocysts to each 19 recipients, 7 recipients were pregnant and finally 5 EGFP transgenic cattle were produced under described ET condition. Therefore, our result suggested that transfer of 2 good-quality expanded blastocysts to 100 μg of Gn-RH injected recipient which have normal corpus luteum with crown is feasible to produce transgenic cattle.
        4,000원