We complete the survey for finite-source/point-lens (FSPL) giant-source events in 2016–2019 KMTNet microlensing data. The 30 FSPL events show a clear gap in Einstein radius, 9 μas < θE < 26 μas, which is consistent with the gap in Einstein timescales near tE ∼ 0.5 days found by Mr´oz et al. (2017) in an independent sample of point-source/point-lens (PSPL) events. We demonstrate that the two surveys are consistent. We estimate that the 4 events below this gap are due to a power-law distribution of freefloating planet candidates (FFPs) dNFFP/d logM = (0.4 ± 0.2) (M/38 M⊕)−p/star, with 0.9 ≲ p ≲ 1.2. There are substantially more FFPs than known bound planets, implying that the bound planet power-law index γ = 0.6 is likely shaped by the ejection process at least as much as by formation. The mass density per decade of FFPs in the Solar neighborhood is of the same order as that of ‘Oumuamua-like objects. In particular, if we assume that ‘Oumuamua is part of the same process that ejected the FFPs to very wide or unbound orbits, the power-law index is p = 0.89 ± 0.06. If the Solar System’s endowment of Neptune-mass objects in Neptune-like orbits is typical, which is consistent with the results of Poleski et al. (2021), then these could account for a substantial fraction of the FFPs in the Neptune-mass range.
We present the analysis of a planetary microlensing event OGLE-2019-BLG-0362 with a shortduration anomaly (∼0.4 days) near the peak of the light curve, which is caused by the resonant caustic. The event has a severe degeneracy with Δχ2 = 0.9 between the close and the wide binary lens models both with planet-host mass ratio q ≃ 0.007. We measure the angular Einstein radius but not the microlens parallax, and thus we perform a Bayesian analysis to estimate the physical parameters of the lens. We find that the OGLE-2019-BLG-0362L system is a super-Jovian-mass planet Mp = 3.26+0.83 −0.58 MJ orbiting an M dwarf Mh = 0.42+0.34 −0.23 M⊙ at a distance DL = 5.83+1.04 −1.55 kpc. The projected star-planet separation is a⊥ = 2.18+0.58 −0.72 AU, which indicates that the planet lies beyond the snow line of the host star.
Since cranes are a kind of complex human-machine systems, it is almost impossible to completely secure safety with current technologies. Therefore, managerial interventions to prevent human errors are needed for safely operating a crane. The Occupational Safety and Health law states that cabin-type crane operators should have crane drivers’ licence and crane-related operators (e.g., pendent-type crane operators, slinging workers) should take a special safety training. However, statistics on industrial accidents showed that fatalities due to crane accidents (185 accidents occurred during 2013~2017) were the highest among hazardous machinery and equipment. To effectively control the crane-related accidents, voices of crane workers need to be analyzed to investigate the current status. This study surveyed perceived causes of crane accidents and status of special safety training for crane workers of 387. The survey revealed that 24.3% of the respondents experienced crane accidents and 31.4% eye-witnessed crane accidents. 79% of the respondents pointed human errors such as improper crane operation and improper slinging as the first cause. Lastly, only 16.7% of the respondents took a professional special safety training; but the rest took lecture-based or incomplete education. The findings of the present study can be applied to improve crane-related policies and special safety training systems.
Crane is an important equipment for the transport of heavy goods in industrial sites, but it is also known as one of the most fatal machines. In order to reduce crane accidents, it is necessary to minimize human errors during crane operations. To achieve this, ergonomic design principles are recommended to be reflected from the crane design stage. The study analyzed the safety certification standards for crane that should be fulfilled at the crane design and manufacturing stage. This study selected five representative ergonomic design principles (feedback, compatibility, consistency, full-proof, and fail-safe) by surveying heuristic evaluation principles that are widely used for usability evaluation in early design stage. Next, the principles were applied to the safety certification standards to identify insufficient clauses. This study identified 12 insufficient clauses out of 119 in the current safety certification standards for crane and discussed their improvement directions to comply the ergonomic principles. The analysis results of this study can help of improving the safety certification standards and the method used in this study can also be applied to identify insufficient clauses in the safety certification standards for other industrial machines such as press machine and lift.
It is dicult for observers to conduct an optical alignment at an observatory without the assistance of an optical engineer if optomechanical parts are to be replaced at night. We present a prac- tical tilt correction method to obtain the optimal optical alignment condition using the symmetricity of optical aberrations of a wide-eld on-axis telescope at night. We conducted coarse tilt correction by visually examining the symmetry of two representative star shapes obtained at two guide chips facing each other, such as east{west or north{south pairs. After coarse correction, we observed four sets of small stamp images using four guide cameras located at each cardinal position by changing the focus positions in 10-m increments and passing through the optimum focus position in the range of 200 m. The standard deviation of each image, as a function of the focus position, was tted with a second-order polynomial function to derive the optimal focus position at each cardinal edge. We derived the tilt angles from the slopes converted by the distance and the focus position dierence between two paired guide chip combinations such as east{west and north{south. We used this method to collimate the on-axis wide-eld telescope KMTNet in Chile after replacing two old focus actuators. The total optical alignment time was less than 30 min. Our method is practical and straightforward for maintaining the optical performance of wide-eld telescopes such as KMTNet.
We report the discovery of a giant exoplanet in the microlensing event OGLE-2017-BLG-1049, with a planet―host star mass ratio of q = 9.53 ± 0.39 × 10-3 and a caustic crossing feature in Korea Microlensing Telescope Network (KMTNet) observations. The caustic crossing feature yields an angular Einstein radius of θE = 0.52 ± 0.11 mas. However, the microlens parallax is not measured because the time scale of the event, tE ≃ 29 days, is too short. Thus, we perform a Bayesian analysis to estimate physical quantities of the lens system. We find that the lens system has a star with mass Mh = 0.55+0.36 -0.29 M⊙ hosting a giant planet with Mp = 5.53+3.62 -2.87 MJup, at a distance of DL = 5.67+1.11 -1.52 kpc. The projected star{planet separation is aㅗ = 3.92+1.10 -1.32 au. This means that the planet is located beyond the snow line of the host. The relative lens{source proper motion is μrel ~ 7 mas yr-1, thus the lens and source will be separated from each other within 10 years. After this, it will be possible to measure the flux of the host star with 30 meter class telescopes and to determine its mass.
At q = 1.81 ± 0.20 × 10-5, KMT-2018-BLG-0029Lb has the lowest planet-host mass ratio q of any microlensing planet to date by more than a factor of two. Hence, it is the first planet that probes below the apparent "pile-up" at q = 5-10 ×10-5. The event was observed by Spitzer, yielding a microlens-parallax πE measurement. Combined with a measurement of the Einstein radius θE from finite-source effects during the caustic crossings, these measurements imply masses of the host Mhost = 1.14+0.10-0.12 M⊙ and planet Mplanet = 7.59+0.75-0.69 M⊕, system distance DL = 3.38+0.22-0.26 kpc and projected separation a⊥ = 4.27+0.21-0.23 AU. The blended light, which is substantially brighter than the microlensed source, is plausibly due to the lens and could be observed at high resolution immediately.
The DEEP-South (the Deep Ecliptic Patrol of the Southern Sky) photometric census of small Solar System bodies produces massive time-series data of variable, transient or moving objects as a by- product. To fully investigate unexplored variable phenomena, we present an application of multi-aperture photometry and FastBit indexing techniques for faster access to a portion of the DEEP-South year-one data. Our new pipeline is designed to perform automated point source detection, robust high-precision photometry and calibration of non-crowded fields which have overlap with previously surveyed areas. In this paper, we show some examples of catalog-based variability searches to find new variable stars and to recover targeted asteroids. We discover 21 new periodic variables with period ranging between 0.1 and 31 days, including four eclipsing binary systems (detached, over-contact, and ellipsoidal variables), one white dwarf/M dwarf pair candidate, and rotating variable stars. We also recover astrometry (< ±1–2 arcsec level accuracy) and photometry of two targeted near-earth asteroids, 2006 DZ169 and 1996 SK, along with the small- (0.12 mag) and relatively large-amplitude (0.5 mag) variations of their dominant rotational signals in R-band.