The objective of this study was to investigate the effects of NEAA and leptin supplemented to in vitro culture medium on the developmental competence of porcine embryos after intracytoplasmic sperm injection (ICSI), and to modify the culture condition to improve the quality and the development of ICSI-derived porcine embryos in vitro. After ICSI, the putative zygotes were then cultured in PZM-3 medium with/without NEAA or leptin. The proportion of embryos that developed to the blastocyst stage significantly increased when 1% NEAA (24.62%) was added to the medium compared with 2% NEAA and no NEAA group (17.24% and 20.24%, respectively, p<0.05). The effect of different concentration of leptin (0, 10, 100, 500 ng/ml) was evaluated on the development of porcine ICSI embryos cultured in vitro. In case of blastocyst formation, 100 ng/ml group (27.05%) showed significantly higher rate than 10, 500 ng/ml, and control group (23.45%, 17.99%, and 19.68%, respectively, p<0.05). We also evaluated the effects of different NEAA and leptin treatment time on the development of porcine embryos after ICSI. Among groups of embryos cultured in the presence of NEAA or leptin for whole 7 days (D 1-7), first 4 days (D 1-4), the subsequent 3 days (D 5-7), both NEAA (27.13%, 21.17 %, and 17.56%, respectively, p<0.05) and leptin (25.60%, 20.61%, and 16.53%, respectively, p<0.05) showed that supplementation for whole 7 days significantly increased the blastocyst formation rate compared with the other groups of D1-4 and D5-7. We further evaluated the combination effect of 1% NEAA and 100 ng/ml leptin compared with the effect of each supplementation with 1% NEAA or 100 ng/ml leptin or no supplementation on development of embryos. For blastocyst formation, combination group of NEAA and leptin (24.78%) showed significantly higher rate than other three groups (18.37%, 20.44 %, and 13.27%, respectively, p<0.05). We further evaluated the expression of proapoptosis genes such as BAX and BAK and anti-apoptosis genes, BCL-XL and BCL-2 in blastocysts cultured in the presence of 100 ng/ml leptin. RT-PCR analysis revealed that leptin supplementation significantly decreased the expression of pro-apoptosis genes as well as increased the expression of anti-apoptosis genes. These results of present study demonstrate that NEAA and leptin could improve the in vitro development of ICSI- derived porcine embryos with optimal concentration of each reagent. Furthermore, the optimal culture condition could increase the quality of ICSI-derived embryos in vitro.
The objective of the current study was to describe in vitro embryo production in Hanwoo, analyzing oocytes yield and embryo production. The effects of oocytes production and the number of OPU procedures per animal on embryo production were also evaluated. OPU was done every 3~4 days during experimental period and collected oocytes were fertilized in vitro in both OPU and needle puncture groups. First, we compared the recovery rate of oocytes based on OPU session (Experiment 1). The average of collected oocytes was calculated from every 10 session. The average number of total oocytes recovered per animalonsessionwas 5.16 (mean). Second, we compared the recovery rate base on collection period of OPU (Experiment 2). The following results show the difference of the number of recovered oocytes in every month during the procedure between the months of session. Every animal shows the constant number of recovered oocytes for the first 5 months. However, the recovery rate of oocytes was decreased from month 6 to 8. Third, we compared the developmental rate to blastocyst in two groups (Experiment 3). Oocytes by needle puncture were fertilized with frozen-thawing semen; the cleavage rate 24~48 h after in vitro fertilization (IVF) was 75.8% and blastocyst development rate was 18.8% in needle puncture group. Even though there is lower cleavage rate after IVF in OPU group (61.1%), blastocyst development rate was higher compared with needle puncture group (28.4%). In conclusion, Blastocyst developmental rate could be increased by OPU than classical method of needle puncture. Improvement of bio- technique in collecting oocytes could be applied to understand the reproductive physiology in cattle, expecially Hanwoo. Therefore, further investigation should be done to clarify the efficiency and advantage of OPU involved in reproduction in animals and human being.
The objective of this study was to evaluate in vitro production of bovine embryos in Hanwoo. Oocytes were collected by ovum pick up (OPU) from ovaries of genetically high-value Hanwoo or by needle puncture from ovaries of slaughtered cattle. OPU was done every 3 4 days duing experimental period and collected oocytes were fertilized in vitro in both OPU and needle puncture groups. First, We compared the in vitro maturation rate in two groups (Experiment 1). 545 oocytes were recoverd from 4 females by 32 trials of OPU and then 433 oocytes were shown MⅡ stage after in vitro maturation (79.4%). In case of needle puncture group, 1905 oocytes were collected and then 1420 oocytes were matured to MⅡ stage during in vitro culture(74.5%). Second, we compared the developmental rate to blastocyst in two groups (Experiment 2). 1420 oocyte by needle puncture were fertilized with frozen-thawing semen; the cleavage rate 24 48 h after in vitro fertilization (IVF) was 88.6% and blastocyst development rate was 20.5% in needle puncture group. Even though there is lower cleavage rate after IVF in OPU group (84.8%), blastocyst development rate was higher compared with needle puncture group (26.4%). In conclusion, Blastocyst developmental rate could be increased by OPU than classical method of needle puncture. Improvement of bio-technique in collecting oocytes could be applied to understand the reproductive physiology in cattle, expecially Hanwoo. Therefore, further investigation should be done to clarify the efficiency and advantage of OPU involved in reproduction in animals and human being. This research was suppoted by Imsil-gun agricultural technology service center.
Arrùno acid transpoπers play an important role in supplying nutrition to cells and for cell proliferation. System L is a major nutrient transport system responsible for the Na+-independent transport of large neutral amino acids including several essential amino acids. In malignant tumors, a system L transporter L-type amino acid transporter 1 (LATl) is upregulated to support tumor cell growth. In the present study, we have examined the expression and function of system L amino acid transporter in FaDu human pharyngeal squamous carcinoma cells. RT-PCR, real-time quantitative RT-PCR and westem blot analysis have revealed that the FaDu cells express LATl together with its associaω19 protem 4F2hc, whereas the FaDu cells do not express the other system L isoform L-type amino acid transporter 2 (LAT2). 까le uptake of L-(14Clleucine by FaDu cells is Na+-independent and almost completely inhibited by system L selective inhibitor 2-aminobicyclo-(2,2,1)-heptane-2- carboxylic acid (BCH). The profiles of the inhibition of L-[I4Cllellcine uptake by variolls amino acids in the FaDu cells are comparable with those for the LA T1 expressed in Xenopus 。()(찌es. π1e majority of L-[I4Clleucine uptake is, therefore, mediated by LAT1 in the FaDu cells. These results suggest that the transport of neutral amino acids including several essential amino acids in the FaDu human pharyngeal squamous carcinoma cells mediated by LAT1. In addition, specific inhibition of LAT1 by such agents as BCH in pharyngeal squamous cell carcinomas will be a new rationale for anti-cancer therapy.