Fetal Bovine Serum (FBS) plays a crucial role in animal cell culture; however, the increasing number of bovine fetuses used and sacrificed solely for FBS collection has raised ethical concerns globally. The welfare of fetuses during FBS blood collection has become a key focus of debate among animal welfare and ethics organizations worldwide. Previous studies indicate that heat-inactivated coelomic fluid (HI-CF) from the earthworm Perionyx excavatus may serve as a viable FBS alternative in adherent cell cultures. This study evaluates the potential of HI-CF as an FBS substitute during the in vitro maturation (IVM) stage of bovine embryo culture, with a focus on improving developmental rate through antioxidation effects. In this study, 2% HI-CF was incorporated into IVM media, assessing its impact on cell growth, differentiation, and the expression of genes related to antioxidation. The group of 2% of HI-CF exhibited a trend toward increased cleavage and blastocyst development rates compared to the control group. Although antioxidant genes such as NRF2 and GSR showed no statistically significant differences between the control and treatment groups, a trend toward increased expression was observed. Conversely, GPX1 displayed a trend of decreased expression. Notably, IGF1 and NQO1 were significant upregulated (p < 0.05) in the 2% HI-CF group. Additionally, oocytes stained with H2DCFDA showed a significantly reduced ROS levels (p < 0.05) in the 2% HI-CF group compared with controls. These findings suggest that HI-CF's antioxidative effects support enhanced cell growth and blastocyst development rate, surpassing those observed with FBS. Consequently, HI-CF shows promise as an effective alternative to FBS in vitro maturation of bovine oocytes.
This study was aimed to evaluate the dose-response the effects of nano-encapsulated conjugated linoleic acids(CLAs) on in vitro ruminal fermentation profiles. A fistulated Holstein cow was used as a donor of rumen fluid. Nano-encapsulated CLAs(LF, 5% of nano-encapsulated CLA-FFA; HF, 10% of nano-encapsulated CLA-FFA; LT, 5% of nano-encapsulated CLA-TG; HT, 10% of nano-encapsulated CLA-TG) were added to the in vitro ruminal fermentation experiment. In the in vitro ruminal incubation test, the total gas production on incubation with nano-encapsulated CLAs was increased significantly according to the incubation time, compared with the control(p<0.05). The tVFA concentrations on addition of LF and HT were significantly higher than that of the control(p<0.05). Thus, nano-encapsulated CLAs might improve the ruminal fermentation characteristics without adverse effects on the incubation process. In addition, the population of Butyrivibrio fibrisolvens which is closely related to ruminal biohydrogenation was increased by adding HT, while decreased by adding LF at 12 h incubation. These results showed that nano-encapsulated CLA-FFA could be applied to enhance CLA levels in ruminants by maintaining the stability of CLA without causing adverse effects on ruminal fermentation profiles considering the optimal dosage.