Like bamboo-sprouts after rains, numerous subμm-sized pyrocarbon whiskers growth on the Mullite (3Al2O3·2H2O) substrate could be observed through a looking glass during methane pyrolysis at the temperature of 1050℃ in this study. If the surface of substrate would be scrubbed strongly with iron metals, then finely sticked iron particles were more effective catalytic for nm-sized whisker growth. Numerous fine flakes of pyrolytic carbon were hanging by invisible nm-whiskers as like as small spiders hanging by a spiderweb. This is the identification of nm-sized whisker growth. Therefore if the pyrolysis would be stopped at the initial stage of the whisker growth, the primary lengthening growth was nm-sized whisker. So could we vary arbitrarily sizes of whisker from nm- to μm-sizes. But μm- and nm-whiskers grown with the different growth mechanism; the former was straight and the latter has twigs, The lengthening growth of whisker was depended on the flow pattern pyrolysis species on the active sites of substrate and on the growth duration. We could obtained straight whisker length of 10~20 μm/min during the primary growth and laboratory spiral whisker of 30~40 μm-diameter/hr during the secondary growth.
A series of activated carbons were prepared from coconut shells and coal-tar pitch binder by physical activation with steam in this study. The effect of variable processes such as activation temperature, activation time and ratio of mixing was investigated for optimizing those preparation parameters. The activation processes were carried out continuously. The nitrogen adsorption isotherms at 77 K on pellet-shaped activated carbons show the same trend of Type I by IUPAC classification. The average pore sizes were about 19-21a. The specific surface areas (SBET) of pellet typed ACs increased with increasing the activation temperature and time. Specific surface area of AC treated for 90 min at temperature 900℃ was 1082 m2/g. The methylene blue numbers continuously increased with increasing the activation temperature and time. On the other hand, iodine numbers highly increased till activation time of 60 min, but the rate of increase of iodine numbers decreased after that time. This indicates that new micropores were created and the existing micropores turned into mesopores and macropores because of increased reactivity of carbon surface and H2O.
반도체 산업의 wafer 가공공정에서 발생하는 폐수를 재활용하고자 한외여과 공정을 이용한 막분리 공정의 도입 가능성을 검토하였다. Pilot 규모의 장치에 분획분자량이 각각 10,000, 20.000, 30,000인 한외여과막 모듈을 이용하여 투과유속 및 제거율 등을 측정하였다. 투과수의 성상은 SDI15, 탁도, 전기전도도, 실리콘 농도분석을 통해 공정수로 재이용이 가능함을 확인할 수 있었다. 투과유속 저하를 막기 위한 역세척 방법으로는 압축공기와 물은 sweeping 하는 방법이 가장 효과적이었고, 이때 투과유속의 회복율이 높게 나타났다. 분획분자량 30,000인 한외여과막에서 가장 높은 투과유속을 나타내었다. 또한 폐수의 평균 실리콘 입자 평균 함량은 3.8-5.6mg/ℓ이고, 투과수의 실리콘 입자 함량은 0.2μg/ℓ이하로 나타나 제거율은약 96%이상으로 나타났다.
Pfiesteria and Pfiesteria-like organisms were reported to be linked to major fish kills (involving well over a billion fish) in North Carolina and Maryland estuaries on the U.S. east coast during the 1990s. Occurrences of these species have been recently reported from Korean waters including Chinhae Bay and the coast of Yeosu. In this study, the life cycle of Cryptoperidiniopsis brodyi and Pfiesteria piscicida were examined using DAPI staining. Their excystment and growth were stimulated directly by the addition of prey cells such as Rhodiminas salina. Amoeboid stages in C. brodyi and P. piscicida were never observed in culture, even after addition of filter-sterile fish mucus and tissue. The dominant life cycle stages consisted of motile flagellated zoospores and cysts. A typical dinoflagellate life cycle was demonstrated by direct observation and DAPI staining.
Activated carbon(AC) can be utilized as a soil conditioner in agricultural crop areas. This study was conducted to investigate the effect of AC on Leaf and Stem Production of Angelica acutiloba as affected by different amounts of AC. The results obtained are summarized as follows. Growth characteristics including plant height and leaf length were the highest when activated carbon added with 10, suggesting that optimum amount of activated carbon was ranged from 10 to 20%. Growth and enlargement of the root were improved by 10% AC.
Activated carbon(AC) can be utilized as a soil conditioner in agricultural crop areas. This study was conducted to investigate the effect of AC on growth and yield of Ginger(Zingiber officinale) as affected by different amounts of AC. The results obtained are summarized as follows. Growth characteristics including plant height and leaf length were the highest when activated carbon added with 5-10%, suggesting that optimum amount of activated carbon was ranged from 5 to 15%. Growth and enlargement of the root were improved by 10% AC with higher rhizome length and weight.