검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2023.11 구독 인증기관·개인회원 무료
        The domestic Pressurized Heavy Water Reactor (PWHR) nuclear power plant, Wolsong Unit 1, was permanently shut down on December 24, 2019. However, research on decommissioning has mainly focused on Pressurized Water Reactors (PWRs), with a notable absence of both domestic and international experience in the decommissioning of PHWRs. If proper business management such as radiation safety and waste is not performed, it can lead to increased business risks and costs in decommissioning. Therefore, the assessment of waste volume and cost, which provide fundamental data for the nuclear decommissioning process, is a crucial technical requirement before initiating the actual decommissioning of Wolsong Unit 1. Decommissioning radiation-contaminated structures and facilities presents significant challenges due to high radiation levels, making it difficult for workers to access these areas. Therefore, technology development should precede decommissioning process assessments and safety evaluations, facilitating the derivation of optimal decommissioning procedures and ensuring worker safety while enhancing the efficiency of decommissioning operations. In this study, we have developed a program to estimate decommissioning waste amounts for PHWRs, building upon prior research on PWR decommissioning projects while accounting for the specific design characteristics of PHWRs. To evaluate the amount of radioactive waste generated during decommissioning, we considered the characteristics of radioactive waste, disposal methods, packaging container specifications, and the criteria for the transfer of radioactive waste to disposal operators. Based on the derived algorithm, we conducted a detailed design and implemented the program. The proposed program is based on 3D modeling of the decommissioning components and the calculation of the Work Difficulty Factor (WDF), which is used to determine the time weighting factors for each task. Program users can select the cutting and packaging conditions for decommissioning components, estimate waste amount based on the chosen decommissioning method, and calculate costs using time weighting factors. It can be applied not only to PHWRs, but also to PWRs and non-nuclear fields, providing a flexible tool for optimizing decommissioning process.
        2.
        2022.10 구독 인증기관·개인회원 무료
        With the aging of nuclear power plants (NPPs) in 37 countries around the world, 207 out of 437 NPPs have been permanently shutdown as of August 2022 according to the IAEA. In Korea, the decommissioning of NPPs is emerging as a challenge due to the permanent shutdown of Kori Unit 1 and Wolsong Unit 1. However, there are no cases of decommissioning activities for Heavy Water Reactor (HWR) such as Wolsong Unit 1 although most of the decommissioning technologies for Light Water Reactor (LWR) such as Kori Unit 1 have been developed and there are cases of overseas decommissioning activities. This study shows the development of a decommissioning waste amount/cost/process linkage program for decommissioning Pressurized Heavy Water Reactor (PHWR), i.e. CANDU NPPs. The proposed program is an integrated management program that can derive optimal processes from an economic and safety perspective when decommissioning PHWR based on 3D modeling of the structures and digital mock-up system that links the characteristic data of PHWR, equipment and construction methods. This program can be used to simulate the nuclear decommissioning activities in a virtual space in three dimensions, and to evaluate the decommissioning operation characteristics, waste amount, cost, and exposure dose to worker. In order to verify the results, our methods for calculating optimal decommissioning quantity, which are closely related to radiological impact on workers and cost reduction during decommissioning, were compared with the methods of the foreign specialized institution (NAGRA). The optimal decommissioning quantity can be calculated by classifying the radioactivity level through MCNP modeling of waste, investigating domestic disposal containers, and selecting cutting sizes, so that costs can be reduced according to the final disposal waste reduction. As the target waste to be decommissioning for comparative study with NAGRA, the calandria in PHWR was modeled using MCNP. For packaging waste container, NAGRA selected three (P2A, P3, MOSAIK), and we selected two (P2A, P3) and compared them. It is intended to develop an integrated management program to derive the optimal process for decommissioning PHWR by linking the optimal decommissioning quantity calculation methodology with the detailed studies on exposure dose to worker, decommissioning order, difficulty of work, and cost evaluation. As a result, it is considered that it can be used not only for PHWR but also for other types of NPPs decommissioning in the future to derive optimal results such as worker safety and cost reduction.
        3.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A carbon fiber reinforced thermoplastic (CFRTP) was irradiated with a high energy electron-beam. As a result, the tensile strength of high-density polyethylene (HDPE)-based CFRTPs was significantly improved by gradually increasing the electron-beam dose. It was confirmed that the adhesion between CF and HDPE was improved and the surface properties of CF and HDPE were readily modified by electron-beam. It was verified from spectroscopic analysis that various oxygencontaining functional groups were formed on the surface of CF and HDPE by irradiation and we believe that strong attractive interactions took place among these functional groups at the interface of CFs and HDPE. Finally, it was conclusive that electron-beam irradiation provided two main effects on CFRTPs. One was cross-linking of thermoplastic resin for efficient load transfer from resin to CF and the other was formation of surface functional group and attractive interaction of these functional groups at the interface of fiber and matrix. These two effects showed synergetic contribution to enhance the mechanical properties of CFRTP.
        4,200원
        4.
        2015.09 구독 인증기관 무료, 개인회원 유료
        Biofilms of oral microbes can cause various diseases in the oral cavity, such as dental caries, periodontitis and mucosal disease. Electrolyzed water generated by an electric current passed via water using a metal electrode has an antimicrobial effect on pathogenic bacteria which cause food poisoning. This study investigated the antimicrobial activity of electrolyzed waters using various metal electrodes on the floatage and biofilms of oral microbes. The electrolyzed water was generated by passing electric current using copper, silver and platinum electrodes. The electrolyzed water has a neutral pH. Streptococcus mutans, Porphyromonas gingivalis and Tannerella forsythia were cultured, and were used to form a biofilm using specific media. The floatage and biofilm of the microbes were then treated with the electrolyzed water. The electrolyzed water using platinum electrode (EWP) exhibited strong antimicrobial activity against the floatage and biofilm of the oral microbes. However, the electrolyzed water using copper and silver electrodes had no effect. The EWP disrupted the biofilm of oral microbes, except the S. mutans biofilm. Comparing the different electrolyzed waters that we created the platinum electrode generated water may be an ideal candidate for prevention of dental caries and periodontitis.
        4,000원
        5.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 열처리가 야콘의 항산화 활성에 미치는 영향을 살펴보기 위하여 열처리 온도(100 및 121℃)와 시간 (15, 30 및 60분)에 따른 항산화 성분 및 항산화 활성 변화를 조사하였다. 열처리 후 야콘의 갈변도, 유리형 및 결합형 폴리페놀 함량, 유리형 및 결합형 플라보노이드 함량, DPPH radical 소거 활성 및 ABTS radical 소거 활성을 측정하였 다. 열처리 후 야콘의 갈변도, 유리형 폴리페놀 및 플라보노이드 함량과 항산화 활성은 열처리 온도와 시간에 따라 유의적(p<0.05)으로 증가하였고, 결합형 폴리페놀 및 플라보노이드 함량은 감소하였다. 야콘의 유리형 폴리페놀 및 플라보노이드 함량은 121℃, 60분 열처리 시 생야콘에 비해 각각 1.2배 및 1.1배로 유의적(p<0.05)으로 증가하였다. 또한, 야콘의 DPPH radical 소거 활성 및 ABTS Radical 소거 활성도 121℃, 60분 열처리 시 생야콘에 비해 각각 1.7배 및 2.0배로 유의적(p<0.05)으로 증가였다. 야콘의 갈변도, 폴리페놀 및 플라보노이드 함량과 DPPH radical 및 ABTS radical 소거 활성 간의 상관관계를 분석한 결과, 높은 상관관계(p<0.01)가 있는 것으로 나타났다. 본 연구결과, 열처리 방법을 통해 야콘의 항산화 성분과 항산화 활성을 강화시킬 수 있으며, 이를 활용한 기능성 식품 소재 개발이 가능할 것으로 생각된다.
        4,000원