High surface carbon aerogels with hierarchical and tunable pore structure were prepared using ionic liquid as carbon precursor via a simple salt templating method. The as-prepared carbon aerogels were characterized by nitrogen sorption measurement and scanning electron microscopy. Through instant visual observation experiments, it was found that salt eutectics not only serve as solvents, porogens, and templates, but also play an important role of foaming agents in the preparation of carbon aerogels. When the pyrolyzing temperature rises from 800 to 1000°C, the higher temperature deepens the carbonization reaction further to form a nanoporous interconnected fractal structure and increase the contribution of super-micropores and small mesopores and improve the specific surface area and pore volume, while having few effects on the macropores. As the mass ratio of ionic liquid to salt eutectics drops from 55% to 15%, that is, the content of salt eutectics increases, the salt eutectics gradually aggregate from ion pairs, to clusters with minimal free energy, and finally to a continuous salt phase, leading to the formation of micropores, uniform mesopores, and macropores, respectively; these processes cause BET specific surface area initially to increase but subsequently to decrease. With the mass ratio of ionic liquids to salts at 35% and carbonization temperature at 900°C, the specific surface area of the resultant carbon aerogels reached 2309 m2 g–1. By controlling the carbonization temperature and mass ratio of the raw materials, the hierarchically porous architecture of carbon aerogels can be tuned; this advantage will promote their use in the fields of electrodes and adsorption.
The two-spotted spider mite Tetranychus urticae is a worldwide crop pest with a high insecticide resistance and an extensive host range. The aim of the present study was to evaluate the effect of PaeciPora®, which was formulated from the aerial conidia of an entomopathogenic fungus Paecilomyces lilacinus strain HY-4, to control T. urticae in cucumber field. In the field study, conidia of P. lilacinus HY-4 and a chemical acaricide azocyclotin were investigated for their control of the adult females of T. urticae. The strain produced a mortality of 56.0% on day 3 and 63.6% on day 7 post-treatment respectively at 1×107 conidia/mL, and no evidence of a mortality benefit was seen in the control group. Additionally, in the pesticide injury test, no agrochemical damage was found in hot pepper, watermelon, Chinese cabbage, oriental melon or strawberry by spraying PaeciPora® on them. The results indicated the possibility of the use of P. lilacinus HY-4 as a microbiological control agent against T. urticae in the Integrated Pest Management program.
An entomopathogenic filamentous fungus, Paecilomyces lilacinus strain HY-4, has a great potential as a promising bio-pesticide due to its superior pathogenicity against Adoretus tenuimaculatus and Tetranychus urticae. When the fungal strain infects host cuticle, it secrets a combination of hydrolytic enzymes including chitinase to solubilize the cuticle. Thus, we investigated effects of different carbon and nitrogen sources on the production of a chitinase from P. lilacinus strain HY-4. The organism produced an extracellular chitinase at a relatively high level (45.4 mU/ml) when cultivated for 5 days on a medium supplemented with insect pupa (0.5%) and colloidal chitin (1%), which was prepared by treating chitin from crab shells (Sigma-Aldrich Co. Ltd.) with 12 N HCl solution. However, extracellular secretion of chitinase by strain HY-4 was found to be significantly repressed in the presence of glucose (1%).
Paecilomyces lilacinus HY-4 is an entomopathogenic filamentous fungus that has exhibited insecticidal activity against Adoretus tenuimaculatus and Tetranychus urticae. Strain HY-4 has attracted a great deal of industrial concerns because this organism can be applicable as a potent bio-pesticide. In this study, we developed an optimal diphasic fermentation technique for HY-4 conidial production. The substrate prescription which was made up of hulls or brans was obtained by screening of agricultural products, and the conidial production could reach a minimum of 2.5×1010 conidia/g after solid fermentation for 12 days in a given condition. It was interesting to note that strain HY-4 was propitious to sporulate more efficiently and productively in liquid fermentation process in the presence of insect pupa. For the industrial application of the HY-4 spores, their pH and thermal stabilities were evaluated on SDA agar plate as well. Additionally, the germination rate of HY-4 spores was still above 90% even when they were stored for 5 months at ambient temperature.
Overtopping Wave Energy Convertor (OWEC) is an offshore wave energy convertor, which comprises the circular ramp and reservoir. It collects the overtopped waves and converting water pressure head into electric power through the hydro-turbines installed in the vertical duct, which is fixed in the sea bed. The performance of OWEC can be represented by the operating water heads of the device, which depends on the amount of the wave water overtopping into the reservoir. In the present paper, the reservoir with the duct connecting to the sea water are studied in the 3D numerical wave tank, which has been developed based on the computational fluid dynamics software Fluent 6.3. Both the overtopping motion and the discharges of the reservoir are investigated together, and several shape parameters and incident wave conditions are varied to demonstrate their effects on the performance of OWEC.