검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 33

        21.
        2017.11 KCI 등재 서비스 종료(열람 제한)
        본 연구는 부가 여과판의 재질로 구리와 니켈을 선정하여 각 물질에 따라 선량과 화질의 차이를 비교 평가하였다. 먼저, 선량에 대한 실험은 흡수선량 측정으로 란도 팬텀을 이용하여 구리 및 니켈의 부가 여과판 을 None, 0.1 mm, 0.2 mm, 0.3 mm로 변화시켜 설치하고 120 kVp, 6.3 mAs의 조건으로 조사하였다. 두 번째로, 관전압 변화와 노출지수 변화에 따라 부가 여과판 두께별로 얻은 영상을 Image J 프로그램을 이용하여 SNR과 CNR값을 구하여 영상을 평가 하였다. 흡수선량 측정은 니켈이 구리보다 높게 나왔으며, 두께가 증가할수록 흡수선량은 감소하였다(p<0.05). 관전압이 증가와 노출지수 변화에 대해서도 두 영상에서 유의한 차이를 보이지 않았다(p>0.05). 결론적으로 본 연구는 부가 여과판에서 니켈은 기존의 구리에 비해 피폭선 량을 감소하면서도 현재의 영상의 질을 유지할 수 있는 물질임을 알 수 있다.
        22.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        In this study, pressure drop was measured in the pulse jet bag filter without venturi on which 16 numbers of filter bags (Ø140 × 850 ℓ) are installed according to operation condition(filtration velocity, inlet dust concentration, pulse pressure, and pulse interval) using coke dust from steel mill. The obtained 180 pressure drop test data were used to predict pressure drop with multiple regression model so that pressure drop data can be used for effective operation condition and as basic data for economical design. The prediction results showed that when filtration velocity was increased by 1%, pressure drop was increased by 2.2% which indicated that filtration velocity among operation condition was attributed on the pressure drop the most. Pressure was dropped by 1.53% when pulse pressure was increased by 1% which also confirmed that pulse pressure was the major factor affecting on the pressure drop next to filtration velocity. Meanwhile, pressure drops were found increased by 0.3% and 0.37%, respectively when inlet dust concentration and pulse interval were increased by 1% implying that the effects of inlet dust concentration and pulse interval were less as compared with those changes of filtration velocity and pulse pressure. Therefore, the larger effect on the pressure drop the pulse jet bag filter was found in the order of filtration velocity(Vf), pulse pressure(Pp), inlet dust concentration(Ci), pulse interval(Pi). Also, the prediction result of filtration velocity, inlet dust concentration, pulse pressure, and pulse interval which showed the largest effect on the pressure drop indicated that stable operation can be executed with filtration velocity less than 1.5 m/min and inlet dust concentration less than 4 g/m3. However, it was regarded that pulse pressure and pulse interval need to be adjusted when inlet dust concentration is higher than 4 g/m3. When filtration velocity and pulse pressure were examined, operation was possible regardless of changes in pulse pressure if filtration velocity was at 1.5 m/min. If filtration velocity was increased to 2 m/min. operation would be possible only when pulse pressure was set at higher than 5.8 kgf/cm2. Also, the prediction result of pressure drop with filtration velocity and pulse interval showed that operation with pulse interval less than 50 sec. should be carried out under filtration velocity at 1.5 m/min. While, pulse interval should be set at lower than 11 sec. if filtration velocity was set at 2 m/min. Under the conditions of filtration velocity lower than 1 m/min and high pulse pressure higher than 7 kgf/cm2, though pressure drop would be less, in this case, economic feasibility would be low due to increased in installation and operation cost since scale of dust collection equipment becomes larger and life of filtration bag becomes shortened due to high pulse pressure.
        23.
        2014.08 KCI 등재 서비스 종료(열람 제한)
        Foundry has an important economic value in the industry. However, the generation of air pollutants like particulate and odor are serious. Due to the unavoidable usage of molding sand, particulate occurs in almost all the processes. That accounts for the majority of respirable dust in the size less than 10 ㎛. As well as particulate, over 22 species of odor-causing gases and VOCs including hydrogen sulfide and ammonia are occurred. Therefore, the development of equipment that can simultaneously remove TVOC and particulate is regarded as an essential research. In this study, the spraying absorbent system was connected with the shear bag filter for the purpose to remove TVOC and particulate simultaneously. Maximization of process efficiency for the affective factors like the powder combination and injection method is conducted. The experiment was performed at the de-molding process of one foundry plant. Through these devices, the removal efficiency of more than 95% for TVOC was achieved with the absorbent that composed by 800 mesh Activated carbon (80%) and 300 mesh zeolite (20%). Also, the durability and economic evaluation were assessed. In the result of Durability assessment, the available recovery to maintain the deodorizing effect at 90% was counted to 350 degree.
        24.
        2012.12 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to develop pilot plant Net3FM(Net Fit Fiber Filter Module) system and to suggest optimum operating condition for municipal wastewater reuse. SS concentration of biologically treated sewage effluent was reduced from 1.5~5.4mg/L to 0.4~1.0mg/L without coagulant injection in Net3FM system, and the SS removal efficiency was average 84.7%. And also, the removal efficiencies of COD and T-P were decreased slightly due to the SS removal by filtration. Coagulation-Filtration test was conducted to enhance the removal efficiencies of SS and T-P. The optimum dosage of coagulant was injected automatically by auto-controlling system, which is controlled by detecting value of turbidity of secondary sewage effluent. SS, COD and T-P concentrations in filtrated effluent were 0.21~0.57, 1.6~6.2 and 0.137~0.392mg/L with coagulant injection by in-line mixer in Net3FM system, respectively. The removal efficiencies of SS and T-P were highly increased to 92.8% and 89.8%, respectively. It was due to the combined the processes of coagulation and filtration. Net3FM system was evaluated that the removal efficiency of pollutants in secondary sewage effluent and the utilization potential as reclaimed water technology were very high.
        25.
        2010.04 KCI 등재 서비스 종료(열람 제한)
        The pressure drop through pulse air jet-type bag filter is one of the most important factors on the operating cost of bagfilter houses. In this study, the pilot-scale pulse air jet-type bag filter with about 6 ㎡ filtration area was designed and tested for investigating the effects of the four operating conditions on the total pressure drop, using the coke dust collected from a steel mill factory. When the face velocity is higher than 2 m/min, it is not applicable to on-spot due to the increase of power expenses resulting from a high-pressure drop, and thus, 1.5 m/min is considered to be reasonable. The regression analysis results show that the degree of effects of independent parameters is a order of face velocity > concentration > time > pressure. The results of SPSS answer tree analysis also reveal that the operation time affects the pressure drop greatly in case of 1 m/min of face velocity, while the inlet concentration affects the pressure drop in case of face velocity more than 1.5 m/min.
        28.
        2007.04 KCI 등재 서비스 종료(열람 제한)
        Research results for the pressure drop variance depending on operation conditions such as change of inlet concentration, pulse interval, and face velocity, etc., in a pulse air jet-type bag filter show that while at 3kg/cm2 whose pulse pressure is low, it is good to make an pulse interval longer in order to form the first layer, it may not be applicable to industry because of a rapid increase in pressure. In addition, the change of inlet concentration contributes more to the increase of pressure drop than the pulse interval does. In order to reduce operation costs by minimizing filter drag of a filter bag at pulse pressure 5kg/cm2, the dust concentration should be minimized, and when the inlet dust loading is a lower concentration, the pulse interval in the operation should be less than 70 sec, but when inlet dust loading is a higher concentration, the pulse interval should be below 30 sec. In particular, in the case that inlet dust loading is a higher concentration, a high-pressure distribution is observed regardless of pulse pressure. This is because dust is accumulated continuously in the filter bag and makes it thicker as filtration time increases, and thus the pulse interval should be set to below 30 sec. If the equipment is operated at 1m/min of face velocity, while pressure drop is low, the bag filter becomes larger and thus, its economics are very low due to a large initial investment. Therefore, a face velocity of around 1.5 m/min is considered to be the optimal operation condition. At 1.5 m/min considered to be the most economical face velocity, if the pulse interval increases, since the amount of variation in filter drag is large, depending on the amount of inlet dust loading, the operation may be possible at a lower concentration when the pulse interval is 70 sec. However, for a higher concentration, either face velocity or pulse interval should be reduced.
        29.
        2006.04 KCI 등재 서비스 종료(열람 제한)
        선박에서 발생되는 밸러스트수를 전처리하기 위하여 수중에 포함되어 있는 입자상 오염물질과 수중생물체를 자동역세척 여과장치를 이용하여 처리한 결과를 나타내었다. 밸러스트수를 처리하기 위한 전처리의 장점은 입자상의 오염물질을 제거하여 후처리공정의 처리효과를 높이는데 있다. 여과필터의 회전속도가 20rpm에서는 여과압력이 40.5mmHg이고, 40rpm 에서는 36.6mmHg이며 60rpm 이상에서는 35mmHg로 나타나 연속적으로 여과할 수 있었다. 필터의 막힘현상으로 역세 회복압력과 역세간격은 시간의 경과에 따라 조금씩 감소하고 처리유량도 감소하는 것을 관찰할 수 있었다. 회분식 여과처리공정은 자동 역세척을 수행하는 공정에 비해서 처리효율의 저하가 일어났다. 여과 처리를 통하여 70μm이상의 식물성 플랑크톤과 동물성 플랑크톤을 포함하는 수중생물체를 제거할 수 있었다. 실험결과를 통하여 밸러스트수 처리에 적용 가능한 기술임을 알 수 있었다.
        32.
        2004.03 KCI 등재 서비스 종료(열람 제한)
        The change of pressure drop according to the change in the inlet concentration, pulse interval, and injection distance of pulse air jet type bag filters, and the effect of venturi installation are as follows. The pressure drop with the range of 30 to 50mmH2O varies according to the injection distance with 30, 50, 70, 90sec and the inlet concentration of venture built-in fabric filters. For the lower concentration of 0.5g/m3 and 1g/m3, the pressure drop(ΔP) was stable 60 to 90minutes after operation. For the higher concentration of 3g/m3, as ΔP continues to go up, pulse interval should be set shorter than 30 seconds. The pressure drop with the injection distance of 110mm, when inlet dust concentration is 0.5g/m3 or 1g/m3, is 1.3 to 2 lower than with the injection distance of 50, 160, and 220mm, which means that the inflow amount of the secondary air by the instant acceleration is large. The injection distance of 2g/m3 and 3g/m3 has the similar pressure distribution. The higher inlet concentration is, the more important pulse interval is than injection distance. The pressure drop has proved to be larger when inlet concentration is lower and injection distance closer, on condition that the venturi is installed. The change in the pressure drop was smallest when injection distance was 50mm, followed by 220mm, 160mm, and 110mm.
        1 2