검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 57

        21.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This research was a laboratory study for evaluating the Reclaimed Asphalt Pavement (RAP) mixture added developed rejuvenator for warm mix recycling. Waste asphalt mixtures occupy about 18.2% of construction wastes in Korea. Moreover, most rejuvenators were imported from Europe or the U.S. Therefore, improving usage of RAP with a developed rejuvenator material provides environmental protection at a reduced cost. METHODS : The specimen used for this experiment was performed by only using RAP. A suitable rejuvenator for Target PG was then added. In addition, a conventional rejuvenator was selected to compare performance and specimens introduced with the same procedure as the developed rejuvenator was prepared. In order to evaluate rutting resistance and water susceptibility, we conducted a deformation strength test, a tensile strength ratio test, and a dynamic immersion test with the prepared mixtures. RESULTS: Laboratory test results indicated that both the developed additive and conventional additive improved performance of the recycled asphalt mixtures compared to mixtures without the rejuvenator. In addition, the deformation strength test and TSR test results satisfied standards for domestic recycling asphalt mixtures. The dynamic immersion test showed that the developed rejuvenator has superior scaling resistance than the conventional rejuvenator. CONCLUSIONS : In terms of rutting resistance and moisture susceptibility, the warm mix recycled asphalt mixtures with the developed rejuvenator appeared to effectively recovered performance.
        4,000원
        22.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES:This study aimed to analyze the experimental and numerical behavior of warm mix asphalt pavement prepared using steel slag and RAP and to conduct economic analysis of pavement construction.METHODS :For developing high performance asphalt pavement, we performed three evaluations: fundamental analysis, experimental testing, and 3D finite element analysis. In particular, 3D finite element analysis was conducted on several pavement structures by adopting the results of experimental tests.RESULTS :Through the various evaluations, it was established that steel slag was effective for use as asphalt mixture aggregate. Moreover, asphalt mixture constituting steel slag and RAP demonstrated higher performance behavior compared with conventionally used asphalt mixture. Furthermore, based on the 3D FE modeling, we established that the developed asphalt pavement constituting steel slag and RAP can be utilized for thin layer pavement with comparable performance behavior.CONCLUSIONS:Warm mix asphalt pavement prepared using steel slag and RAP is more competitive and economic compared to hot-mix asphalt pavement. Moreover, it can be applied for preparing thin layer asphalt pavements with reasonable performance. The developed warm mix asphalt pavement prepared using steel slag and RAP can be an alternative pavement type with competitive performance based on the reasonable economic benefit it provides.
        4,200원
        23.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The study objective was to evaluate rheology and physical properties of SBS-modified warm-mix asphalt (WMA) binders in comparison with hot-mix asphalt (HMA) binders. METHODS : Four different SBS polymers were used to prepare polymer-modified asphalt (PMA) binders, and three different warm-mix additives (WAD) were used to prepare a total of 12 WMA PMA binders. The kinematic viscosity was measured at 115, 135℃. The PG was determined using DSR and BBR. The pass/fail (P/F) temperatures for high and low PG grading were evaluated for HMA PMA and WMA PMA binders. RESULTS: PG 76-22 binders could be prepared by modifying the base binder (PG 64-22) using 4.5 wt% of SBS. The kinematic viscosity (KV) of SBS PMA was increased by 3 times higher than that of base asphalt. The SBS PMA with WAD showed 10% lower KV than that of the normal SBS PMA at 115℃ The high P/F temperatures showed almost no difference between HMA PMA and WMA PMA binders. The high P/F temperature showed very high correlations with KV (R2 > 0.97). The result of SBS modification caused increase of low P/F temperature by 2.7℃ on average. CONCLUSIONS : Since the PMA with WAD showed 10% lower KV than normal (HMA) PMA at 115℃, reducing PMA mixture temperature down to a WMA level was possible in this study. The higher KV binders showed the higher P/F temperature. There was almost no change in high P/F temperature due to the use of WAD. The SBS PMA, showing an increased low P/F temperature, might show somewhat poorer performance at low-temperature, even though the lower PG grade was staying at the same level, i.e., -22℃.
        4,000원
        25.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to evaluate of field application and laboratory performance of warm-mix asphalt (WMA) according to the dosage rate of organic-based WMA additive. METHODS: Three asphalt mixtures, i.e., hot mix asphalt (HMA), WMA with the dosage rate of 1.5%, WMA with the dosage rate of 1.0%, were sampled from the asphalt plant when the field trial project were constructed. With these mixtures, the laboratory testings were performed to evaluate the linear viscoelastic characteristics and the resistance to moisture, rutting and fatigue damage. RESULTS : From the laboratory test results, it was found that the WMA with the reduced dosage rate of additive would be comparable to HMA and WMA with the original dosage rate in terms of the dynamic modulus, tensile strength ratio, rutting resistance. However, the fatigue reisistance of WMA with the reduced dosage rate was slightly worse but it should be noted that the fatigue performance is necessarily predicted by combining the material properties and pavement structure. CONCLUSIONS: Through the field construction and laboratory testings, the dosage rate of organic-based WMA additive could be reduced from 1.5% to 1.0% without the significant decrease of compactability and laboratory performance. The long-term performance of the constructed pavement will be periodically monitored to support the findings from this study.
        4,000원
        26.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The liquid-type chemical warm-mix asphalt (WMA) additive has been developed. This study evaluates the basic properties of the additive and the mechanical properties of WMA asphalt and mixture manufactured by using the newly developed chemical additive. METHODS: First, the newly developed WMA additive was applied to the original asphalt by various composition of additive components and dosage ratio of additive. These WMA asphalt binders were evaluated in terms of penetration, softening point, rotational viscosity, and PG grade. Based on the binder test results, one best candidate was chosen to apply to the mixture and then the mechanical properties of WMA mixture were evaluated for moisture susceptibility, dynamic modulus, and rutting and fatigue resistance. RESULTS : According to the binder test, WMA asphalt binders showed the similar properties to the original asphalt binder except the penetraion index of WMA additive was a little higher than original binder. From the Superpave mix design, the optimum asphalt content and volumetric properties of WMA mixture were almost the same with those of hot mix asphalt (HMA) mixture even though the production and compaction temperatures were 30℃ lower for the WMA mixture. From the first set of performance evaluation, it was found that the WMA mixture would have some problem in moisture susceptibility. The additive was modified to improve the resistance to moisture and the second set of performance evaluation showed that the WMA mixture with modified chemical additive would have the similar performance to HMA mixture. CONCLUSIONS : Based on the various laboratory tests, it was concluded that the newly developed chemical WMA additve could be successfully used to produce the WMA mixture with the comparable performance to the HMA mixture. These laboratory evaluations should be confirmed by applying this additive to the field and monitoring the long-term performance of the pavement, which are scheduled in the near future.
        4,000원
        27.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The main purposes of this study are to examine the influences of polyethylene wax-based WMA additive on the optimum asphalt content of warm-recycled asphalt mixture based on the Marshall mix design and to evaluate performance of warm-recycled asphalt mixture containing 30% RAP with polyethylene wax-based WMA additive. METHODS: Physical and rheological properties of the residual asphalt were evaluated in terms of penetration, softening point, ductility and performance grade (PG) in order to examine the effects of polyethylene wax-based WMA additive on the residual asphalt. Also, To evaluate performance characteristics of the warm-recycled asphalt mixtures using polyethylene wax-based WMA additive along with a control hot-recycled asphalt mixture, indirect tensile strength test, modified Lottman test, dynamic immersion test, wheel tracking test and dynamic modulus test were conduced in the laboratory. RESULTS : Based on the limited laboratory test results, polyethylene wax-based WMA additive is effective to decrease mixing and compacting temperatures without compromising the volumetric characteristics of warm-recycled asphalt mixtures compared to hot-recycled asphalt mixture. Also, it doesn't affect the optimum asphalt content on recycled-asphalt mixture. All performance test results show that the performance of warm-recycled asphalt mixture using polyethylene wax-based WMA additive is similar to that of a control hot-recycled asphalt mixture. CONCLUSIONS: Overall, the performance of warm-recycled asphalt mixture using polyethylene wax-based WMA additive is comparable to hot-recycled asphalt mixture.
        4,000원
        31.
        2012.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Hot-mix asphalt(HMA) concretes show a trend of strength increase at low temperature due to binder stiffness increase, but strength decrease below a ceratin low temperature. This is due to the differential thermal contraction(DTC) which is induced by a significant difference in coefficients of thermal contraction between aggregate and asphalt which is coated around the aggregate. This DTC damage is well known to occur in HMA concrete, but is not yet investigated in warm-mix asphalt(WMA) concretes. METHODS : To evaluate DTC damage on WMA in this study, the flexural strength(Sf) of WMA concretes, which were produced at 30~40℃ lower temperature, was evaluated in comparison with that of HMA at -5, -15 and -25℃. RESULTS : Most of WMA and HMA mixtures showed flexural strength increase down to -15℃ and decrease below -15℃. this type of strength reduction below -15℃ can e explained as the effect of differential thermal contraction that is a consequence of the large difference in coefficients of thermal contraction between aggregate and asphalt. the property reduction of WMA is similar the result of previous works dealt with HMA mixtures. CONCLUSIONS : Even though there is some differences by materials used, the WMA concretes showed a significantly lower DTC damage than HMA concrete at low temperature at α=0.05 level.
        4,000원
        32.
        2012.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study evaluated the field applicability and laboratory performance of warm-mix asphalt (WMA) as an alternative technology in asphalt pavement. METHODS : The pilot road using two different types of WMA mixture and one HMA mixture was constructed in Waegwan-Seokjeok road construction site and the mixtures were sampled at the asphalt plant for laboratory testings. The field applicability was assessed in environmental aspects, such as CO2 emission, and in aspects of constructibility using the existing equipment and procedure, i.e., thickness and density measurement. The laboratory testings included the moisture susceptibility test by AASHTO T283, dynamic modulus test, triaxial repeated load permanent deformation test, and the fatigue test. RESULTS : The temperatures for production and compaction of WMA were 20~30℃ lower than those for HMA and therefore, the noxious gas emission were significantly reduced. The field density of WMA pavements was similar or better than that of HMA pavement. From the laboratory testings, it was found that WMA mixtures exhibit comparable performance to HMA mixture in moisture susceptibility, permanent deformation, and fatigue performance. CONCLUSIONS : With these results, it would be concluded that WMA could replace the existing HMA technology without any significant issue. To support this conclusion, it is necessary to track the long-term performance of WMA in pilot road.
        4,000원
        34.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        15년 정도의 짧은 역사를 가지고 있는 중온 아스팔트 포장은 국내·외적으로 현재 가장 관심대상이 되는 에너지 절약과 환경보호를 추구하는 도로건설분야의 그린기술이다. 본 연구는 이러한 중온 아스팔트의 물성평가를 아스팔트 덩어리 전체 거동으로 고려한 기존 침입도, 점도, 그리고 수퍼페이브에 의한 아스팔트 시험방식으로부터 벗어나 아스팔트 피막두께에 따른 물성평가로 시각을 바꾸어 새로운 프로토콜을 제시하고 결과분석에 따른 새로운 평가기준제안을 하는 것이 목적이다. 이를 위해 기존에 개발한 DSR Moisture Damage의 실험 및 분석의 기본틀을 ARES장비를 통해 각 피막두께별 물성을 측정하고 분석하였다. 분석결과를 통해 200μm와 400μm 사이에 물성의 급격한 변화를 볼 수 있는 한계피막두께가 존재하고 또한 가열아스팔트와 중온아스팔트가 가지고 있는 한계피막두께근처에서 발생하는 물성의 급격한 변화가 서로 다르다는 것을 확인할 수 있었다. 이런 결과를 통해 기존 가열 아스팔트와 성질이 다른 중온 아스팔트를 제대로 평가하기 위해서는 200μm와 400μm 사이 피막두께의 물성평가를 고려해야한다는 것을 제안한다.
        4,300원
        35.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        아스팔트 혼합물을 중온에서 생산하여 다짐할 수 있는 중온 아스팔트 기술이 개발되었다. 중온 아스팔트 기술은 유해가스를 줄일 수 있어 친환경적 아스팔트 포장 기술로 인정받고 있으며 전 세계적으로 그 사용량이 점점 증가하고 있다. 최근, 국내에서도 순수 국산화 기술로 중온 아스팔트 혼합물용 첨가제를 개발하여 이에 대한 품질평가와 중온 아스팔트 혼합물에 대한 성능평가를 수행하고 있다. 2008년도부터 다수의 신설 국도 구간에 자체 개발한 중온 아스팔트 첨가제를 사용하여 생산한 중온 아스팔트 혼합물을 이용하여 시험포장을 성공적으로 완료하였다. 2010년 대전지방국도관리청 산하 신설 국도포장의 중간층에 두 종류에 중온화 첨가제(일반 중온화 첨가제(WMA), 폴리머 개질 중온화 첨가제(WMA-P))를 사용한 두 종류에 중온 아스팔트 혼합물과 한 종류에 가열 아스팔트 혼합물을 각각 생산하여 시험포장을 완료하였으며 시함포장에 사용한 혼합물을 사용하여 본 연구를 수행하였다. 현장 아스팔트 플랜트에서 생산된 두 종류의 중온 아스팔트 혼합물(WMA, WMA-P)과 일반 가열 아스팔트 혼합물(HMA)을 각각 채취하였으며 실내에서 실제 도로에서 발생하는 차량하중과 환경을 모사할 수 있는 소형 포장 가속시험기(MMLS3)를 사용하여 아스팔트 혼합물의 소성변형 저항성과 수분민감도를 비교 평가하였다. 소형 포장 가속 시험결과 현장 아스팔트 플랜트에서 생산한 중온 아스팔트 혼합물은 가열 아스팔트 혼합물보다 우수한 소성변형저항성과 수분민감도를 보여 주었다. 순수 국산화 기술로 중온 아스팔트 혼합물용 첨가제는 가열 아스팔트 혼합물 보다 낮은 온도에서 중온 아스팔트 혼합물을 생산하고 다짐하는데 효과적인 것으로 평가되었다.
        4,000원
        36.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 중온화 첨가제(LEADCAP®)를 사용한 중온 아스팔트 바인더의 노화 방법에 따른 물성 변화 특성을 평가하고자 하였다. 아스팔트 바인더의 노화 거동을 모사하기 위해 단기노화인 RFTO를 실시하였으며, 햇빛에 의한 자연 노화 거동을 알아보기 위해 자외선 경화기를 이용하여 자외선에 의한 열화거동을 모사하였다. 이러한 열화 중온 아스팔트 바인더의 역학적인 물성과 유변동학적인 특성을 시험하기 위해서 만능시험기(UTM)과 동적전단유동기를 이용하여 직접인장력과 유변동학적인 거동을 평가하였다. 또한, 열분석 장비를 이용하여 온도에 따른 중온 아스팔트 바인더의 특성을 평가하여, 자외선 노출에 따른 열화가 발생하여도 온도에 따른 물성 변화가 많이 발생하지 않음을 발견하였다. 70℃에서 중온화 첨가제가 첨가한 단기노화 중온 아스팔트 바인더의 경우, PG 등급에서의 고온 등급의 기준값을 만족함을 알 수 있었다. 또한 저온에서 중온 아스팔트 바인더의 인장 특성을 평가한 결과, 인장강도 향상과 함께 인장력이 증가됨을 알 수 있었다.
        4,000원
        37.
        2011.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        환경보호에 부응하고 고에너지효율성을 갖춘 중온아스팔트혼합물이 가열아스팔트혼합물의 대안으로 부각되고 있다. 본 연구의 목적은 아스파민을 혼합하여 제조한 중온아스팔트혼합물을 실험적으로 평가하고, 역학적-경험적 포장설계법인 MEPDG를 이용하여 설계한 결과를 일반아스팔트혼합물 설계와 비교하는 것이다. 실험재료는 최대공칭치수 12.5mm인 골재와 PG64-28바인더가 사용되었으며, 기존 혼합물, 0.3%와 0.5%의 아스파민을 혼합한 중온아스팔트혼합물에 대한 회복탄성계수실험이 실시되었다. 실험결과를 MEPDG 설계의 입력변수로 하여 분석한 결과, 아스파민을 사용한 중온아스팔트혼합물의 소성변형량이 일반혼합물에 비해 훨씬 적어 소성변형에 대한 저항성이 향상됨을 알 수 있었다.
        4,000원
        1 2 3