검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 47

        21.
        2018.10 구독 인증기관·개인회원 무료
        Toll and IMD pathways play an important role in producing antimicrobial peptides (AMPs) through NF-κB in insects. The functions of IκB kinase (IKK) complex regulating the NF-κB signaling cascade have not yet been investigated in Tenebrio model. Here, we identified TmIKK-β (or TmIrd5) which contains 2,112 bp encoding 703 amino acid residues. Domain analysis shows that TmIKK-β contains one Serine/Threonine protein kinases catalytic domain. Developmental expression patterns indicate that TmIKK- β gene was highly expressed in early pupal (P1) and adult (A5) stages. Tissue specific profiles show that TmIKK-β was highly expressed in the integuments in last instar larvae, and fat body and hemocytes in 5 day-old adults. TmIKK-β1 transcripts were strongly induced at 3 and 12 h-post injection of E. coli, and 3 h-post injection of S. aureus or C. albicans in hemocytes. In gut, TmIKK-β transcripts were slightly induced by E. coli (at 6, 9 and 24 h) and C. albicans (at 24 h), while it was not induced by S. aureus challenge. Moreover, it was highly induced at 6 h-post injection of E. coli and then it was gradually decreased in the fat body. To understand the immunological role of TmIKK-β, gene specific RNAi and mortality assay was performed. Depletion of TmIKK-β mRNA leads to increase microbial susceptibility of larvae against E. coli, S. aureus and C. albicans. In addition, induction patterns of fourteen AMP genes in response to microbial challenge was tissue specifically investigated in TmIKK-β–silenced T. molitor larvae. The results suggest that expression of ten AMP genes out of fourteen genes were drastically decreased by TmIKK-β RNAi in fat body, suggesting that TmIKK-β plays an important role in antimicrobial innate immune responses.
        22.
        2018.10 구독 인증기관·개인회원 무료
        IKK-γ is an essential protein to form IKK complex which regulate NF-κB. We identified TmIKK-γ (or TmKenny) gene which has 1,521 bp of nucleotides encoding 506 amino acid residues. Domain analysis of TmIKK-γ shows that there are one NF-κB essential modulator (NEMO) domain and a leucine zipper domain. Expression of TmIKK-γ gene was gradually increased from egg to 2-day-old pupal stage, dramatically decreased until 7 day-old pupal stage, and then it was gradually increased. TmIKK-γ transcripts were highly expressed in fat body and hemocytes in late instar larvae and integuments, fat body and Malpighian tubules in 5 day-old adult. TmIKK-γ was drastically induced by E. coli after 3 h challenges and by S. aureus at 3 and 12 h-post injection in hemocytes. TmIKK-γ was not induced by C. albicans although it was significantly induced by E. coli (at 3, 6 and 24 h) and S. aureus (at 9 h) in gut. In fat body, expression of TmIKK-γ was drastically induced by E. coli at 3 and 24 h-post injection while it was not significantly induced by S. aureus and C. albicans. To understand the immunological role of TmIKK-γ, gene specific RNAi and mortality assay was performed. larval mortality against microbial challenge was dramatically increased by TmIKK-γ RNAi. Furthermore, we investigate the tissue specific induction patterns of fourteen AMP genes in response TmIKK-γ dsRNA-treatment. In fat body, ten AMP genes out of fourteen was not significantly induced by microbial challenge in TmIKK-γ dsRNA-treated group. Based on these results, TmIKK-γ might play an important role in antimicrobial innate immune responses in Tenebrio molitor.
        26.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A total of nine Korean indigenous goats were used in a cross-over arrangement to give nine replicates per treatment, and they were housed individually assigned to 1 of 9 dietary treatments. Nine treatments were 0, 500, and 1000 ppm of quercetin supplementation in diets by mixing roughage and concentrate with different ratios (RC ratio) of 3:7 (RC 30), 5:5 (RC 50) and 7:3 (RC 70). Nutrient utilizations of dry matter, crude fat and NDF were not affected by neither RC ratio nor dietary quercetin (p>0.05), but the rate of crude protein and ADF increased in animals in RC 70 group regardless of quercetin supplementation (p<0.05). In addition, higher RC ratio increased (p<0.05) N retention and N retention rate. Total VFA, acetic acid, propionic acid, iso-butyric acid, butyric acid, iso-valeric acid and valeric acid contents were not affected (p>0.05) by dietary quercetin. Meanwhile, lower total cholesterol level exhibited in animals in RC 70 group compared to RC 30 or 50 groups, unrelated to dietary quercetin (p<0.05), however other plasma parameters were not influenced (p>0.05) by RC ratio and dietary quercetin. Our results indicated that both RC ratio and dietary quercetin may not directly affect the production indices and immune responses in Korean indigenous goat
        4,000원
        29.
        2016.04 구독 인증기관·개인회원 무료
        Human body and head lice are obligatory human ectoparasites. Although both body and head lice belong to a single species, Pediculus humanus, only body lice are known to be a vector of several bacterial diseases. The higher vector competence of body lice is assumed to be due to their weaker immune response than that of head lice. To test this hypothesis, immune reactions were compared between body and head lice following infections by two model bacteria, Staphylococcus aureus and Escherichia coli, and a human pathogen, Bartonella quintana. Following dermal or oral challenge, the number of these bacteria increased both in hemocoel and alimentary tract of body lice but not in head lice and the viability of the B. quintana was significantly higher in body louse feces, the major route of infection to human. In addition, body lice showed the lower basal/induced transcription level of major immune genes, cytotoxic reactive oxygen species and phagocytosis activity compared with head lice. These findings suggest that a reduced immune response may be responsible, in part, for the increased proliferation and excretion of viable bacteria which are associated with the high level of human infectivity seen in body versus head lice.
        34.
        2014.04 구독 인증기관·개인회원 무료
        Hemocytes are key players in the immune response against pathogens in insects. However, the hemocyte types and their functions in the white-spotted flower chafers, Protaetia brevitarsis seulensis (Kolbe), are not known. In this study, we used various microscopes, molecular probes, and flow cytometric analyses to characterize the hemocytes in Protaetia brevitarsis seulensis. we identified the professional phagocytes, granulocytes (GRs), which mediate encapsulation and phagocytosis of pathogens. The GRs were immunologically or morphologically activated and phagocytosed potentially hazardous substances in vivo.
        35.
        2014.04 구독 인증기관·개인회원 무료
        Prostaglandins (PGs) mediate insect immune responses. However, their biosynthesis in insects is little understood due to lack of cyclooxygenase (COX) ortholog. This study aimed to identify PG-biosynthetic factor(s) in Spodoptera exigua, which has been a well-known insect in possessing immune responses mediated via PGs. Peroxidases (POXs) are a sister group of COX genes. Ten putative POXs (POX-A ∼POX-J) were expressed in S. exigua. Especially, expressions of POX-F and POX-H were inducible to bacterial challenge and expressed in hemocytes and fat body. Individual RNA interference (RNAi) of each of ten POXs was performed by hemocoelic injection of their specific double-strnaded RNAs (dsRNAs). Only RNAi of POX-F or POX-H specifically suppressed hemocyte-spreading behavior and nodule formation. Addition of PGE2 significantly nescued the immunosuppression in either dsRNA treatment of POX-F or POX-H. Structural analysis indicated that both POX-F and POX-H have conserved domain and residues corresponding to peroxinectin of Drosophila melanogaster, which mimics COX-like activity. These results suggest that POX-E and POX-H are involved in PG biosynthesis in S. exigua.
        36.
        2014.04 구독 인증기관·개인회원 무료
        Integrin is a cell surface protein that is composed of α and β heterodimer and mediates cell interaction with extracellular matrix or other cells including microbial pathogens. A full length cDNA sequence (2,517 bp) of a integrin subunit β1 (HaITGβ1) was cloned from the oriental tobacco budworm, Helicoverpa assulta. Phylogenetic analysis showed that HaITGβ1 was clustered with other insect β integrin subunits with the highest amino acid sequence identity (61%) to β1 of other Noctuidae such as Spodoptera exigua and S. litura. Structural analysis of the HaITGβ1 possessed all functional domains known in other insect β1 integrins. RT-PCR analysis showed that HaITGβ1 was expressed in all developmental stages and all tested tissues of H. assulta. Injection of double-stranded HaITGβ1 RNA (dsHaITGβ1) into third instar of H. assulta suppressed HaITGβ1 expression and resulted in significant delay from last larval stage to pupal stage. The dsHaITGβ1 injection significantly impaired nodule formation of H. assulta in response to bacterial challenge and hemocyte adherence. These results suggest that HaITGβ1 plays crucial roles in cellular immune responses as well as development in H. assulta.
        37.
        2014.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Brucellosis is a zoonotic infectious disease of domestic animals, wild animals and humans. Innate immunity is a rapid and non-specific immune response that occurs during the early stages of Brucella invasion. Physical barriers such as epithelial cells and gastric juice secretions form the first line of defense. Humoral components such as complement and lysozyme can remove microorganisms by opsonization and bactericidal actions. Cellular components of the immune system, including macrophages, dendritic cells, neutrophils and innate T cells, have major roles in innate immunity. They recognize invading Brucella spp. by various cell surface receptors and then kill both the invading microorganisms and infected cells owing to their phagocytic or cytotoxic activity. In addition, they present Brucella antigens or produce cytokines to trigger adaptive immunity. Activated adaptive immunity consists of T helper cells, cytotoxic T cells and antigen-specific antibody-producing B cells. These can eliminate Brucella spp. effectively via antigen-specific mechanisms and by immunological memory. T cells activate bactericidal functions in macrophages by producing cytokines such as IFN-γ and by exerting cytotoxic effects on the infected cells. B cells produce antigen-specific antibodies that neutralize or opsonize the antigen. Because Brucella spp. can survive in macrophages and other host cells, Th-1 cellular immunity that enhances the bactericidal effects of phagocytic cells and the cytotoxic effects of lymphocytes is more important than humoral immunity in Brucella infection.
        4,000원
        38.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of the study was to investigate an effect of water temperature on a non-specific immune response and mortality of tilapia, Oreochromis niloticus, following a bacterial infection. Seventy five tilapia acclimated to 25℃ were then transferred at 16 and 36℃, and examined for non-specific immune responses over 12-96 h. Respiratory burst activity was reduced significantly in the group of fish cultured at 16 and 36℃ over 24-96 h, whereas phagocytic activity decreased significantly in the group of fish reared at a low temperature (16℃) over 12 and 24 h and high temperatures (36℃) over 12-96 h. Lysozyme activity diminished significantly in the group of fish transferred to 16℃ over 12-48 h, but increased significantly in the group of fish at 36℃ over 48 and 96 h. Alternative complement pathway (ACH50) decreased significantly when transferred to 16℃ after 12 h, but increased significantly when transferred to 36℃ after 24 h. In a challenging test, 30 tilapia reared at 25℃ were injected intraperitoneally with Streptococcus iniae at a dose of 2x107 cfu/fish, and then reared onward at water temperatures of 15, 25 (control), and 36℃. Over 12-96 h, the cumulative mortality of S. iniae-injected fish held in 16 and 36℃ was significantly higher than that of injected-fish held in 25℃ In conclusion, transfer of tilapia from 25℃ to low temperature (16℃) after 12 h, and transfer of fish from 25℃ to high temperature (35℃) reduced their immune capability. Furthermore, tilapia under temperature stress at 16 and 36℃ from 25℃ decreased its resistance against S. iniae
        4,000원
        39.
        2013.04 구독 인증기관·개인회원 무료
        Immune defense is indispensible for insect survival. However, uncontrolled and excessive immune responses would be highly detrimental and energy-consuming processes. An insect cytokine, plasmatocyte-spreading peptide (PSP), induces hemocyte-spreading behavior as well as activating phenoloxidase (PO) in the beet armyworm, Spodoptera exigua. A hemocyte transcriptome of S. exigua contains a partial sequence of a putative PSP-binding protein (SePSP-BP). SePSP-BP was expressed in all developmental stages especially in hemocytes and fat body. A quantitative RT-PCR showed that the bacterial infection significantly up-regulated the expression level of SePSP-BP. A double-stranded RNA specific to SePSP-BP (dsRNASePSP-BP) was injected and suppressed SePSP-BP expression even in response to bacterial challenge. The larvae treated with dsRNASePSP-BPsuffered high mortality to infection of nonpathogenic bacteria and prolonged high PO activity after the immune challenge. These results suggest that SePSP-BP may play a role in suppressing immune responses as a negative controller
        40.
        2011.10 구독 인증기관·개인회원 무료
        The human body and head louse are ectoparasites of humans for thousands of years. Although both body and head lice belong to a single species, Pediculus humanus, only body lice are known to transmit several bacterial diseases. This different vector competence is assumed to be due to their different immune responses. Here, the immune reactions in the alimentary canal were investigated in both two louse subspecies following oral challenge of Escherichia coli as a model gram-negative bacteria. In propagation assay, head lice suppressed the proliferation of E. coli in their epithelial cells effectively at the early stage of infection, resulting in gradual reduction of E. coli number in gut tissues. In contrast, the number of E. coli steadily increased in gut tissues of body lice. No apparent alteration of transcription was observed following E. coli challenge in three important genes for the humoral immune responses, PGRP as a recognition gene and defensin1 and 2 as effector genes. Nevertheless, the basal transcription levels of these genes were higher in the gut tissues of head lice than body lice. Considering that there is no cellular immune reactions in gut tissues, these findings suggest that the higher constitutive transcription levels of major immune genes in head lice can contribute to their initial defense and immune capacity against intestinal bacterial infection.
        1 2 3