검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 45

        41.
        2016.11 서비스 종료(열람 제한)
        온실가스인 이산화탄소는 다른 온실가스에 비해 Global Warming Potential(GWP)가 가장 낮지만 배출량이 전체 온실가스 중 88 %의 비중을 차지하고 있다. 많은 국가에서 기후변화에 관심을 가지고 이산화탄소 저감에 대한 연구개발이 활발히 일어나고 있다. 본 연구에서는 암모늄 화합물을 이용하여 이산화탄소를 포집하고 산업폐기물의 금속이온을 이용하여 무기재료인 탄산칼슘을 생성하는 다양한 방법을 소개한다. 탄산칼슘 생성을 위해 칼슘이온이 포함된 탈황석고, 폐시멘트를 이용하였다. 결과에서 이산화탄소 포집 성능 및 최종생성물의 결정구조를 확인하였으며, 이산화탄소 loading 값  는 약 2.0의 값을 가진다. X-Ray Diffraction, Scanning Electron Microscope의 분석을 통하여 탄산칼슘이 생성되었음을 확인하였으며, 결정구조는 Vaterite가 생성됨을 확인할 수 있다. 효과적인 공정을 위하여, 생성물을 생성한 후 용액을 회수하여 재이용할 수 있어 연속적인 공정이 가능하다. 회수된 용액의 재이용의 가능성을 보기위하여 이산화탄소를 재흡수 시키면서 같은 공정을 2cycle씩 진행하여, 연속적인 공정의 잠재성을 확인하였다.
        42.
        2015.11 서비스 종료(열람 제한)
        The concentration of carbon dioxide in atmosphere is gradually increasing as industrial activity is being facilitated. Since most of the industries are getting their energy from fossil fuels such as coal, petroleum and gas, carbon dioxide production is inevitable. However, by applying suitable carbon capture process at the end of the carbon dioxide emission facilities, the amount of carbon dioxide emitted to atmosphere can be significantly reduced. Thus, Carbon Capture and Storage (CCS) technologies have been developed by many nations. In that technology, captured carbon dioxide is stored in deep ocean or the underground holes. However, considering environmental effects and geological distinct characteristics, CCS technologies are thought to be developed finding new way to handle captured carbon dioxide. One of the method is to turn captured carbon dioxide into precipitated calcium carbonate salt by adding calcium ions. Conventionally, calcium carbonate salt formation is achieved by reaction under high pressure and temperature. However, this method requires large amount of energy to maintain reaction condition. Hence, carbon dioxide reduction and utilization technology through carbon fixation or carbonation in aqueous phase is proposed in this research. Using aqueous absorbent, carbon dioxide is captured and precipitated calcium carbonate salt was formed by adding calcium ions. All of the reaction occurred under ambient temperature and pressure (1 atm, 298.15 K). The amount of carbon dioxide reduction as well as yield of precipitated calcium carbonate salt were considered. Also, through instrumental analysis including Scanning Electron Microscope (SEM), X‐Ray Diffraction (XRD) and Thermogravimetric Analysis (TGA), possibility of final product utilization was investigated.
        43.
        2013.04 서비스 종료(열람 제한)
        As international regulations for greenhouse gas emissions is strengthened in order to respond to climate change all over the world, we need to reduce greenhouse gas in urban planning. we derived the elements of the plan for a carbon balance of Seoul and suggested a methodology of urban design guidelines regarding the carbon balance.
        44.
        2008.07 KCI 등재 서비스 종료(열람 제한)
        The use of support materials on the nanoparticle synthesis and applications has advantages in many aspects; resisting the aggregation and gelation of nanoparticles, providing more active sites by dispersing over the supports, and facilitating a filtering process. In order to elucidate the influence of the supports on the nitrate reduction reactivity, the supported iron nanoparticles were prepared by borohydride reduction of an aqueous iron salt in the presence of supports such as activated carbon, silica and polyethylene. The reactivity for nitrate reduction decreased in the order of unsupported Fe(0) > activated carbon(AC) supported Fe(0) > polyethylene(PE) supported Fe(0) ≥ silica supported Fe(0). Rate constants decrease with increasing initial nitrate concentration implying that the reaction is limited by the surface reaction kinetics.
        45.
        1996.10 KCI 등재 서비스 종료(열람 제한)
        The electrochemical carbon dioxide reduction to produce acetaldehyde, methanol and ethanol is investigated by using perovskite type electrode (La0.9Sr0.1CuO3). The experiments were performed under 100 mA/㎠ and -2 to -2.5 V vs. Ag/AgCl. The highest faradaic efficiencies for methanol, ethanol, acetaldehyde were 11.6, 15.3, and 6.2%, respectively. The experimental data demonstrated that the capability of the perovskite type oxide for the electrode of electrochemical carbon dioxide reduction to produce alcohols was superior to other metal electrode.
        1 2 3