검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 189

        61.
        2022.05 구독 인증기관·개인회원 무료
        In this study, the current situation of recycling domestic and foreign metal clearance waste was reviewed to suggest the optimal recycling scenario for metal clearance waste that occurs the most when decommission nuclear power plants. Factors that can directly or indirectly affect the recycling of metal clearance waste were analyzed and evaluation criteria that can be used to evaluate optimal recycling measures were prepared. Using this, a scenario for recycling the optimal metal clearance waste suitable for the domestic environment was proposed. As a result of comparing/reviewing the importance of the first level of the evaluation criteria, public acceptance, national policy, and regulatory requirements were evaluated as the most important ones, and recycling acceptance and regulatory requirements were evaluated as the most important the second level of evaluation criteria. As a result of reviewing the clearance waste recycling scenario, it was evaluated that unrestricted recycling scenario was preferred. This may be because the survey subjects are composed of experts in the nuclear power field, so they know recycling of clearance waste in general industries does not significantly affect radiation safety. However even if it is clearance waste, the public may feel reluctant to recycle just because it was discharged from nuclear power plants, so policy and institutional improvements are needed to reassure the public along with the scientific safety of clearance waste. In addition, in order to improve public acceptance, it seems necessary to prepare specific measures to ensure the participation of public in the entire decommissioning process, share related information, and disclose all routes from generation to disposal of decommissioning waste. Considering that research on domestic clearance waste recycling options has not been activated, this study is significant in that it derives a scenario for recycling metal clearance waste that can be implemented. Also, it is expected that the evaluation criteria derived from this study will be used significantly when establishing a radioactive waste management strategy.
        62.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In decommissioning a nuclear power plant, numerous concrete structures need to be demolished and decontaminated. Although concrete decontamination technologies have been developed globally, concrete cutting remains problematic due to the secondary waste production and dispersion risk from concrete scabbling. To minimize workers’ radiation exposure and secondary waste in dismantling and decontaminating concrete structures, the following conceptual designs were developed. A micro-blast type scabbling technology using explosive materials and a multi-dimensional contamination measurement and artificial intelligence (AI) mapping technology capable of identifying the contamination status of concrete surfaces. Trials revealed that this technology has several merits, including nuclide identification of more than 5 nuclides, radioactivity measurement capability of 0.1–107 Bq·g−1, 1.5 kg robot weight for easy handling, 10 cm robot self-running capability, 100% detonator performance, decontamination factor (DF) of 100 and 8,000 cm2·hr−1 decontamination speed, better than that of TWI (7,500 cm2·hr−1). Hence, the micro-blast type scabbling technology is a suitable method for concrete decontamination. As the Korean explosives industry is well developed and robot and mapping systems are supported by government research and development, this scabbling technology can efficiently aid the Korean decommissioning industry.
        4,300원
        63.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The nuclear legacy that remains in the United Kingdom (UK) is complex and diverse. Consisting of legacy ponds and silos, redundant reprocessing plants, research facilities, and non-standard or one-off reactor designs, the clean-up of this legacy is under the stewardship of the Nuclear Decommissioning Authority (NDA). Through a mix of prompt and delayed decommissioning strategies, the NDA has made great strides in dealing with the UK’s nuclear legacy. Fuel debris and sludge removal from the legacy ponds and silos situated at Sellafield, as part of a prompt decommissioning strategy for the site, has enabled intolerable risks to be brought under control. Reactor defueling and waste retrievals across the Magnox fleet is enabling their transition to a period of care and maintenance; accelerated through the adopted ‘Lead and Learn’ approach. Bespoke decommissioning methods implemented by the NDA have also enabled the relevant site licence companies to tackle non-standard reactor designs and one-off wastes. Such approaches have potential to influence and shape nuclear decommissioning decision making activities globally, including in Korea.
        8,100원
        76.
        2021.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The challenges facing companies and institutions surrounding civil nuclear decommissioning are diverse and many, none more so than those faced in the United Kingdom. The UK’s Generation I nuclear power plants and early research facilities have left a ‘Nuclear Legacy’ which is in urgent need of management and clean-up. Sellafield is quite possibly the most illfamed nuclear site in the UK. This complex and challenging site houses much of what is left from the early days of nuclear research in the UK, including early nuclear reactors (Windscale Piles, Calder Hall, and the Windscale Advanced Gas Cooled Reactor) and the UK’s early nuclear weapons programme. Such a legacy now requires careful management and planning to safely deal with it. This task falls on the shoulders of the Nuclear Decommissioning Authority (NDA). Through a mix of prompt and delayed decommissioning strategies, key developments in R&D, and the implementation of site licenced companies to enact decommissioning activities, the NDA aims to safety, and in a timely manner, deal with the UK’s nuclear legacy. Such approaches have the potential to influence and shape other such approaches to nuclear decommissioning activities globally, including in Korea.
        8,000원
        77.
        2021.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, basic strategies for the decommissioning and site remediation of the Fukushima Daiichi Nuclear Power Station (FDNPS) were investigated. Six scenarios were formulated based on two of the three decommissioning strategies of nuclear power plants defined by the International Atomic Energy Agency (IAEA): immediate dismantling and deferred dismantling. A multicriteria decision analysis was performed to analyze the preferences of the options from the viewpoints of the timeframe to complete decommissioning, the resulting waste, the site usability, and the availability of the radioactive waste disposal route. The same six scenarios were applied to both the FDNPS and the nuclear power plants that ceased operation after a normal plant life cycle for comparison. For the FDNPS, the decommissioning project involved fuel debris retrieval, dismantling, and site remediation. The analysis results suggest that the balance between the amount of waste and the time to achieve the end state may be one of the most critical factors to consider when planning the decommissioning and site remediation of the FDNPS.
        4,000원
        78.
        2021.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        For application in nuclear decommissioning, underwater laser cutting studies were conducted on thick stainless-steel plates for various cutting directions using a 6 kW fiber laser. For cutting along the horizontal direction with horizontal laser irradiation, the maximum cutting speed was 110 mm∙min−1 for a 48 mm thick stainless-steel plate. For cutting along the vertical direction with horizontal laser irradiation, a maximum speed of 120 mm∙min−1 was obtained for the same thickness, which confirmed that the cutting performance was similar but slightly better. Moreover, when cutting with vertically downward laser irradiation, the maximum cutting speed was 120 mm∙min−1 for a plate of the same thickness. Thus, the cutting performance for vertical irradiation was nearly identical to that for horizontal irradiation. In conclusion, it was possible to cut thick stainless-steel plates regardless of the laser irradiation and cutting directions, although the assist gas rose up due to buoyancy. These observations are expected to benefit laser cutting procedures during the actual dismantling of nuclear facilities.
        4,000원
        79.
        2021.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In the dismantling process of a reactor coolant system (RCS) piping, a radiation protection plan should be established to minimize the radiation exposure doses of dismantling workers. Hence, it is necessary to estimate the individual effective dose in the RCS piping dismantling process when decommissioning a nuclear power plant. In this study, the radiation exposure doses of the dismantling workers at different positions was estimated using the MicroShield dose assessment program based on the NUREG/CR-1595 report. The individual effective dose, which is the sum of the effective dose to each tissue considering the working time, was used to estimate the radiation exposure dose. The estimations of the simulation results for all RCS piping dismantling tasks satisfied the dose limits prescribed by the ICRP-60 report. In dismantling the RCS piping of the Kori-1 or Wolsong-1 units in South Korea, the estimation and reduction method for the radiation exposure dose, and the simulated results of this study can be used to implement the radiation safety for optimal dismantling by providing information on the radiation exposure doses of the dismantling workers.
        4,200원
        1 2 3 4 5