검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 136

        121.
        2018.10 서비스 종료(열람 제한)
        The purpose of this study is to evaluate the validity of design criteria for the SCP module specified in KEPIC-SNG. The structural performance of the compression members for the SCP module joint types was measured and the characteristics of the compression members were analyzed. As a result, For all specimens, the maximum load exceeded the ultimate strength.
        122.
        2018.04 KCI 등재 서비스 종료(열람 제한)
        The energy efficiency of gas turbine using LNG as a fuel has reached to less than about 40% even for the H class gas turbine. To increase the energy efficiency, in theoretical analysis, the maximum value of fuel efficiency can be obtained via the equally large value of the mixing rate and reaction rate in the harmonic-mean type overall reaction rate expression. Even if the delayed mixing rate can be overcome successfully by the strategy of the practically proved lean-burn method, however, the critical problem caused by the retarded reaction rate caused by the excess air has to be solved in order to make any breakthrough of the engine or gas turbine fuel efficiency. To do this, a series of systematic numerical calculation has been made for the evaluation of the lean-burn CH4 flame feature with the addition of small amount of H2 or HHO (H2+1/2O2, water electrolysis gas). To maintain lean burn state, the flow rate of methane was greatly reduced less than 50% of the standard flow rate. The addition of HHO or H2 heating value has increased steadily from 5, 10 and up to 20% of the 100% CH4 flow rate. And investigation of flame characteristics such as peak flame temperature and its location together with the temperature profile has been made through numerical calculation for a gas turbine combustor. For the standard case of 100% CH4 injection, the flame temperature profile was observed to increase steadily from the primary combustor region to gas turbine inlet. This is exactly corresponds to the temperature profile appeared in a heating process with constant pressure assumption in a typical Brayton cycle. However, for the case of co-burning with H2 or HHO with only 40 and 50% CH4 injection, the peak flame temperature appears near the upstream primary region and decreases significantly along the downstream toward turbine inlet. A detailed discussion further has been made for the flame characteristics with the change of added fuel amount and its type. In summary, the addition of the H2 and HHO gas with the reduced amount of the CH4 flow rate results in quite different temperature profile expected from the standard Brayton cycle. Further this kind of flame feature suggests the possibility of high fuel efficiency together with the reduction of the metallurgical thermal damage of the turbine blade due to the decreased gas temperature near turbine inlet.
        123.
        2016.11 서비스 종료(열람 제한)
        일반적으로 저급의 화석연료나 폐기물로부터 thermochemical conversion을 통해서 고급의 에너지를 얻는 전환기술은 열분해, 가스화, 액화, 연소 등을 들 수 있는데 이들 전환기술들은 반응 온도, 압력, 그리고 공급된 반응물 종류 및 유무에 따라 서로 다른 1차 생성물을 얻을 수 있으며 이들 1차 생성물들은 다시 사용 목적에 따라 여러 단계의 변환 공정을 통하여 최종적으로 유용한 생성물을 만들게 된다. 특히 폐기물을 대상으로 하는 가스화 공정은 환경문제와 에너지 효율을 동시에 접근할 수 있는 공정으로 각광을 받고 있다. 가연성 폐기물로부터 일산화탄소와 수소가 주성분인 합성 가스를 얻기 위한 주된 반응은 환원 반응이다. 이반응은 흡열반응으로 연이어서 발생하는 연소반응에서 생성된 열을 이용한다. 연소반응으로 생성된 CO2와 H2O를 환원시켜 결과적으로 CO와 H2를 생성한다. CO2 + H2O → CO + H2 본 연구에서는 이러한 가스화 반응으로 얻어진 합성가스를 기존의 LNG 연소로에 적용할 때 내부 온도 및 유동의 변화를 해석하여 향후 가스화 공정으로부터 얻어진 합성가스의 산업 현장에의 적용가능성을 평가해 보고자 한다. 합성가스는 기체상 연료이므로 발열량의 차이는 존재하지만 기존의 LNG를 연료로 사용하고 있는 산업용 연소로에 버너의 큰 교체 없이 사용이 가능할 것으로 판단되며 내부 열유동에 큰 변화가 생기지 않는다면 가스화 장치로부터 얻어진 합성가스의 판로 개척에 일조를 할 것으로 판단된다. 본 연구에서는 LNG를 연료로 사용하는 연소로를 대상으로 LNG의 70%를 합성가스 연료로 대체했을 때 연소로의 내부 열유동 해석 및 합성가스의 주입노즐 배치 및 주입 방법 등을 변화시켜 다양한 변수 연구를 수행하여 의미있는 결과를 도출하였다. 연구 결과 발열량 차이에 따라 주입량이 증가되므로 그 점을 감안하여 적절한 방법으로 주입하면 연소로 내부 열유동 분포의 큰 변화 없이 연료대체가 가능한 것으로 나타났다.
        124.
        2016.09 KCI 등재 서비스 종료(열람 제한)
        The synthetic gas obtained from the gasification of waste material becomes more important not only in waste reduction but also for the generation of clean energy directly applicable to industrial combustors firing LNG fuel without any major modification of the boiler system. Therefore, in this study, a systematic calculation was made for the turbulent reaction inside a conventional LNG combustor to determine the temperature distribution and fluid flow field. By doing this, the syngas obtained from gasification of combustible waste could be evaluated for the potential applicability of syngas as a substitute for LNG fuel in the industrial field. In this calculation, the ratio of the syngas amount to the LNG amount was fixed. That is, based on calorific value, 70% of the fuel was syngas and 30% was LNG. Since the calorific value of the syngas was different from that of LNG with a high energy density, the different volumetric flow rate was expected to give rise to a visible flow field change together with the local velocity. Thus, in this study, the swirl intensity and the inlet nozzle diameter were varied carefully in order to resolve the flow field and turbulence effects on the reaction characteristics of the co-burning flame. First of all, the calculation result of pure LNG combustion was made successfully as a reference and for evaluation of the code implementation. The results obtained from the numerical simulation of the burning of syngas in the LNG boiler could duplicate the combustion feature almost similar to that of 100% LNG fuels by changing the injection method of the syngas without any major change of the boiler system. The results suggested the high potential of syngas as an economic substitute for conventional LNG fuel.
        128.
        2014.04 KCI 등재 서비스 종료(열람 제한)
        In this study, the waste gasification gas was co-fired with LNG and water electrolysis gas (or stoichiometrically well-mixed hydrogen oxygen gas) in order to see the change of flame characteristics compared to the standard case of wellknown LNG flame. In detail, a numerical study was made to figure out the fundamental combustion characteristics ofthe waste produced gas blended LNG or hydrogen-oxygen mixture gas flame in an existing industrial LNG combustor.As a preliminary study, the mixture of 70% synthetic gas blended with 30% LNG or hydrogen-oxygen mixture gas wascompared with pure LNG fuel with maintaining the same total input of heating value. Especially, the reason to includethe hydrogen-oxygen mixture gas, that is, the mixture of H2 and 1/2 O2, as a fuel is following:the hydrogen-oxygenmixture gas has a rather high heating value since it does not need air as oxidizer, which consists of 79% N2 as inertmaterial. The result shows that the case of mixture fuel with LNG exhibits more broadening flame shape than the 100%LNG flame. Further, it is observed that there is a phenomenon like a disappearance of CTRZ (Central ToroidalRecirculation Zone) and flame extinction showing partial lift-off of flame around strong swirl flow near burner. This kindof observation appeared in the case of blended fuel mixture is considered probably due to the increased effect of velocityand turbulence stress caused by the mass increase by the addition of low calorific fuel. However, the case of mixturefuel with hydrogen-oxygen mixture gas and water vapor does not show any flame instability phenomenon due to increasedflow rate as in LNG case.
        129.
        2010.07 KCI 등재 서비스 종료(열람 제한)
        LNG 천연가스로서 저장과 운반이 용이한 액체로 변형이 가능하며, 청정연료로 각광받게 되어, 석유에너지의 의존도를 낮추고 에너지사용의 다변화를 위해 1986년 인도네시아로부터 처음 도입된 이래로 산업의 성장과 더불어 그 수요량이 지속적으로 증가하고 있다. LNG는 천연가스의 부피를 영하 약 -162℃(-260℉)까지 냉각시켜 1/600까지 줄일 수 있으므로, 저장 및 운반에 있어서 매우 효율적이다. 현대의 LNG 저장탱크는 철근 콘크리트 이중벽과 내부 니켈방호벽 및 벽사이의 효율이 높은 단열재로 구성된 완전 방호식이 적용되고 있다. 단열재는 극저온의 온도가 LNG 탱크 외벽으로 전달되는 것을 차단하며, 바닥슬래브, 외벽 및 상부에 설치된다. LNG 저장탱크의 단열재의 배치에 따라 콘크리트 외조에 작용하는 온도분포에 차이가 나므로, 본 연구에서는 기 건설된 완전 방호식 LNG 저장탱크 바닥판 단열재의 배치에 대해 검토하고, 이를 바탕으로 단열시스템 개선 방안을 제안하고자 한다.
        130.
        2009.12 KCI 등재 서비스 종료(열람 제한)
        LNG선의 건조 동향을 보면 2003년을 기점으로 하여 기하급수적으로 증가하기 시작 하였으며, 2008년을 기점으로 하여 그 건조량은 감소하는 추세이나 건조 선박 중 많은 부분이 재액화 시스템이 장착된 대형 LNG선박으로 대형 LNG선은 216K급의 Q-Flex급, 260K급의 Q-Max급이 주를 이루고 있다. 이러한 LNG선박의 대형화는 LNG선의 화물창 보온 설계 기준인 BOR(Boil Off Rate) 0.15%를 기준해서 상대적으로 많은 양의 BOG가 발생하게 되었으며 선박의 주 추진기관의 연료로 사용 하더라도 잉여 가스가 남게 되어 화물탱크의 압력상승을 막기 위해서는 BOG를 재 액화하여 화물탱크로 반송하거나 소각하는 방법 등으로 처리하지 않으면 안 되게 되었다. 이러한 이유로 인하여 206K(206,000m3)급 이상의 대형 LNG 선박에서는 필수적으로 LNG 재액화 시스템을 탑재하도록 설계를 하게 된다. 본 연구에서는 현재 개발 되어 운항선에 적용되고 있는 여러 가지 LNG 재액화 시스템의 사이클 성능을 동일한 기기 조건하에서 해석함으로써 각각의 장단점을 비교하여 LNG선박의 설계 및 운항 시 재 액화 시스템의 최적화 방안을 제시하고자 한다.
        131.
        2004.06 KCI 등재 서비스 종료(열람 제한)
        본 논문에서는 변화하는 LNG 해운환경에 의한 3∼5년 이내의 Spot 시장 등장 가능성을 시스템다이내믹스 방법으로 분석하고, 이러한 가능성에 대한 하주인 가스공사의 전략적 대응방안을 모색하였다. 즉 하주와 해운선사가 상호 협력하여 국제적이고 자본집약적인 해운 및 조선 산업의 특징을 최대로 활용하면서 치열한 가능성에 대판 하주인 가스공사의 전략적 대응방안을 모색하였다 즉, 하주와 해운선사가 상호 협력하여 국제적이고 자본집약적인 해운 및 조선 산업의 특징을 최대로 활용하면서 치열한 국제시장에서 모두가 발전하고 미래의 LNG 및 LNG핀 Spot시장을 선점할 수 있는 전략과 이에 대응하기 위하여 필요한 선박 확보 방안으로 i) 하주가 직접 참여하는 방안, ii) 하주가 자회사를 통하여 참여하는 방안, 그리고 iii) 하주가 컨소시엄을 통하여 참여하는 방안을 제시하였다.
        133.
        2000.12 KCI 등재 서비스 종료(열람 제한)
        The ship’s safe mooring stability is a principles for the safe cargo handling works at the mooring berth. Today numerous standards, guidelines and recommendations concerning mooring practices, fittings and equipments exist throughout the worldwide maritime industries. In recently, the mooring facilities were constructed as dolphin types at the open sea area apart far from shoreside instead of enclosed coastline area in accordance with increasing ship’s size and for preventing environmental pollution. Therefore the exciting wave condition must be considered as a basic environmental criteria with the wind force and current force for all of the mooring ships at the sea berth facilities. In this study, this added wave force as one of the environmental external forces by using the theoretical formula was applied to the LNG ship in Pyeongtaeg harbor needed the special mooring stability of the sea berth. Through this research, it can be confirmed that wave force is the very important factor in the mooring force and the strength of wave force works much more in the full laden condition than in the lightship condition. And also the wave force changes to non-linear states according to the wave frequency and wave length. In addition, the maximum limit criteria of environmental force of prohibiting the entering ship on the berth and loading works controlled by the port authority concerned of Pyeongtaeg port fully satisfies the condition of the mooring limit force recommended by OCIMF that the safe permitted force of the mooring line have to be within 55 % of MBL.
        134.
        2000.12 KCI 등재 서비스 종료(열람 제한)
        Nowadays LNG has been beginning to take the place of petroleum as fuel all over the world and VLCC of LNG will take the same sea routes that had been used by VLCC tankers of petroleum in the last part of the 20th century. The transportation of LNG by a VLCC include more dangerous nature of sea peril than that of petroleum. We already know the dimensions of a disaster a LNG tanker could bring about in the case of the LNG tanker, Yuyo-Maru No. 10 in the Tokyo Bay of Japan in 1974. From the point of safety when we construct a LNG base or LNG pier in the base, the appropriate government authority and constructing company had better take sea pilots or some ships handling experts to participate in a prior consultation of the design of the project. A G/T 100,000 ton LNG base and pier were completed in November of 1996 in Inchon harbour in Korea and VLCC of LNG of G/T 100,000 ton class have been entering into the base ever since. This study was started and completed In comply with the requisition of the Sea Pilot Association of Inchon harbour in advance of the opening of the LNG base. As the entrance and exit channels leading to Inchon harbour were constructed in the years of 1930s, it was one of the most pressing works for Inchon sea pilots in 1996 to certify the method of safe passing maneuvering of a G/T 100,000 ton of LNG tanker through the Pudo narrow channel prior to commencing actual piloting of the VLCC of LNG. The authors made some mathematical models computing maneuvering of a vessel changing her course with her control surface through a narrow channel and computed maneuvering of a G/T 100,000 ton of LNG tanker and also made maneuvering simulations of the vessel by a desk-top simulator. The results of computations and simulations are well coincided with each other in qualitative aspects to assure safe passing of the VLCC of LNG.
        6 7