Alkaline direct liquid fuel cells (ADLFCs) employing anion-exchange membranes as a fuel barrier have attracted significant attention as promising alternative energy sources. ADLFCs are allowed to use more abundant anode catalysts which are cheaper than the catalyst used in that using hydrogen fuel. In this work, novel pore-filled anion-exchange membranes (PFAEMs) were successfully fabricated by combining a highly porous poly(tetrafluoroethylene) film and cationic polyelectrolytes with structurally stable anion-exchange sites. The results of the membrane characterizations revealed that the optimization in the crosslinking degree and hydrophilicity of membranes should be considered for the successful application of the PFAEMs to ADLFCs. (KETEP)(20153030031720) and (MOTIE) (No. 10047796).
SAFCs are recently being highlighted to overcome the disadvantages of AFCs. According to the recent works, alkaline doped PBI membranes exhibited good ionic conductivity, acceptable mechanical strength and high thermal stability. Suitable ionomer binder solutions for SAFCs were necessary. In this study, QPBIs having quaternized intermediate MGMC in the side group were synthesized for use as anion conducting ionomer binder. In addition, crosslinker was added in the catalyst slurry to improve the mechanical strength and chemical stability. The QPBIs were investigated in terms of FT-IR, NMR, ionic conductivity, KOH uptake etc. Moreover, MEAs prepared with different amounts of ionomer binder in electrodes were evaluated by CV and IV curve.
고분자전해질 연료전지용 막-전극접합체 내 전극에는 삼상계면을 구성하기 위하여 이온 전도가 가능한 이오노머가 함유되어야한다. 따라서 촉매슬러리 제조를 위해 이오노머가 용매 시스템에 분산되어 있는 분산 용액 형태이어야 한다. 하지만 상용 이오노머 분산 용액의 종류가 제한되어 있으며 개발 물질로 제 조된 전해질막과의 호환성을 위해 동일 물질 기반의 분산 용액으로의 전환이 요구된다. 본 연구에서는 동결 건조 방식을 활용한 고분자 분쇄방법을 도입하여 이오노머를 분쇄하고 이를 활용한 이오노머 분쇄 용액을 제조하여 다양한 물성 및 성능을 조사하였다.
본 발표에서는 고분자막의 열화(Degradation)원인과 열화 조건, 열화방지 방법, 고분자막 내구성 평가 방법 등에 대해서 논의하고자 한다. PEMFC 고분자 막의 열화원인은 전기화학적인 열화를 포함한 화학적인 열화와 물리적인 열화, 열에 의한 열화로 분류할 수 있다. 고분자 막이 전기화학적열화가 잘되는 조건은 OCV와 같은 높은 전압, 저 가습, 고온, 높은 수소/산소 압력 조건이다. 고분 자막의 내구성을 평가하기 위해서 열화 가속화 기법을 사용하는데, 전기화학적 내구성은 OCV holding 기법을, 물리적 내구성은 Wet/Dry 기법을 일반적으로 사용한다. 이들 내구성 평가 방법에 관한 미국의 DOE 프로토콜과 일본의 NEDO 프로토콜을 비교 검토한다.
범세계적인 온실가스저감 노력이 활발하게 움직이고 있다. 이러한 현상은 수송분야에서 친환경자동차 보급이라는 전략으로 이루어지고 있다. 친환경자동차 중 수소연료전지차는 수소라는 신에너지를 활용하는 자동차로 친환경차 중 유일하게 전기를 생산히야 모터를 구동하는 자동차이다. 수소연료전지차는 수소와 공기를 사용하기 때문에 청정하다는 이로운 점도 있지만 아직은 해결해야할 다양한 문제점을 가지고 있다. 수소연료전지차에서 전기를 생산하는 스택 내 부품 중 전해질 막은 수소이온을 전달하고 생성된 물을 활용하는데 매우 중요한 역할을 하고 있으나 불순물, 온도변화, 부하운전, 가습조건 등 다양한 자동차 환경에서 열화가 발생한다. 전해질 막 연구에 있어 자동차 운전환경에서 나타나는 열화 현상과 발생 가능성 및 해결방안에 대한 고찰을 하였다.
술폰화 폴리아릴렌에테르술폰(SPAES) 랜덤 공중합체는 고분자 전해질 연료전지에 적용될 때 높은 수소이온전도 도, 상대적으로 낮은 생산 단가 그리고 열화학적 저항성등과 같은 장점을 갖는다. 반면, SPAES 공중합체는 가혹한 구동 조건 하에서 낮은 화학적 안정성과 치수 불안전성으로 인해 실제 연료전지 막에 직접적으로 적용하는데 어려움이 있다. 그에 타당 한 해결책은 SPAES 공중합체를 상호 연결된 기공 구조와 높은 열화학적 강도를 가지는 지지체 필름(예 : 전기방사된 폴리이 미드 지지체)에 함침시키는 것이다. 본 연구에서는 함침막 제조를 위한 이오노머로 빠른 이온 수송을 위해 높은 자유 체적을 유도하는 회전 그룹을 갖는 SPAES 공중합체를 선택하였다. 제작된 막의 실용가능성은 막 특성화를 통해 평가되었다.
고분자전해질막은 전극 이외에 전기 화학 연료전지의 성능을 결정하는 중요한 요소이다. 고분자전해질막은 가스나 양성자 등의 작은 분자를 선택적으로 수송해야 한다. 고분자전해질막을 투과한 가스는 급속히 전기 화학적 환원을 발생시켜 음극 촉매의 열화를 유발하기 때문에 수소 장벽으로 작동해야 하며 가능한 한 빨리 양성자를 이동시켜야 한다. 지금까지 고분자전해질막의 수소 기체 투과도를 측정하는데 한정된 방법(예 : Constant volume/variable pressure (Time-lag)법)을 사용 했다. 그러나 측정의 대부분은 고분자전해질막은 건조된 진공 하에서 이루어진다. 그렇지 않으면 얻어진 수소 투과도는 측정 오차가 커지는 원인이 되기 쉽다. 이 연구에서는 일반적으로 고분자전해질막으로 사용되는 Nafion212의 수소 가스 투과 특성을 온도와 습도가 동시에 제어되는 in-situ 측정 시스템을 이용하여 평가하였다.
Sulfonated poly(arylene ether sulfone)(SPAES) random copolymers are representative alternatives to perfluorinated sulfonic acid(PFSA) ionomers used as the state-of-the-art polymer electrolyte membranes for fuel cells. SPAES copolymers have advantages such as low hydrogen permeability, low production cost. However, it is difficult to demonstrate high electrochemical single cell performances for a long period time, since SPAES membranes have critical interfacial issues with catalyst layers containing PFSA ionomers, particularly in the repeated hydrated and dehydrated cycles. In this study, called as radiation grafting of proton conductive polymers on SPAES membranes, is tried in order to improve proton conductivity without a severe loss in dimensional stability and to reduce interfacial resistance with PFSA catalyst layers at the same time.
Sulfonated poly(arylene ether sulfone) (SPAES) random copolymers have been perceived as membrane materials alternative to perfluorinated sulfonic acid (PFSA) ionomers, since they are cheap and chemically tunable when compared with PFSA. Moreover, their relatively low gas permeability, particularly to hydrogen, contributes to reduced thermal decomposition of membrane-electrode assemblies. In spite of their advantages, freestanding SPAES copolymers have critical issues associated with chemical/electrochemical durability as well as interfacial resistance with electrodes. In this study, SPAES-PTFE reinforced membranes are fabricated using consecutive membrane formation protocols, (e.g., SPAES nanodispersion in water-alcohol mixtures, spontaneous pore-filling, and solvent-assisted thermal treatment techniques) and systematically evaluated.
Polymer electrolyte membrane fuel cells (PEFCs) are eco-friendly energy conversion systems to convert hydrogen directly into electricity via an electrocatalytic reaction. Representative membrane materials of PEFCs are Perfluorinated sulfonic acid (PFSA) ionomers including NafionⓇ and 3M ionomers. In spite of high proton conductivity, it is difficult to apply PFSA free-standing membranes in real PEFC applications owing to their weak mechanical failures and thermo-chemical decomposition during PFEC operations, in addition to a relatively high production cost. In this study, Nafion nanodispersions in water-alcohol mixtures are fabricated using a supercritical fluid technique. The fundamental membrane characteristics are compared with those of counterpart membranes obtained from a commercially available Nafion emulsion.
직접 메탄올 연료전지(Direct Methanol Fuel Cells)는 액상의 메탄올을 연료로 직접 사용하는 전기 에너지 전환 장치로서 연료의 값이 싸고 취급이 용이하며 초소형화가 가능하다. Montmorillonite (MMT)가 첨가된 고분자 전해질 분리막의 경우 열적⋅물리적 성질이 개선되며 메탄올 투과도가 감소되는 장점을 가지고 있지만 이온전도도는 감소가 되는 단점을 가지고 있다. 본 연구에서는 술폰산기(-SO3H)를 포함하는 MMT를 제조하여 Sulfonated Poly(arylene ether sulfone)(SPAES) 고분자와 sulfonated MMT(sulMMT)를 혼합하여 유⋅무기 복합막을 제조하고 특성평가가 이루어졌다.
본 연구에서는 SPAES를 이용하여 제조된 블렌드막을 이용하여 연료전지용 전해질 막으로써의 응용 가능성을 확인하기 위하여 테스트를 진행하였다. 제조된 분리막은 상용화된 PES,PVdF를 이용하여 제조되었으며, 소수성 고분자가 첨가되어 메탄올 투과도가 감소됨을 확인하였으며 물리적 강도가 증가됨으로써 잠재적 가능성을 확인할 수 있었다.
Perfluorinated sulfonic acid (PFSA) ionomers have been widely used for renewable energy generation, including polymer electrolyte fuel cells (PEFCs), owing to their excellent resistance to harsh chemicals and good ion-transport properties. PFSA materials experience critical chemical decomposition to radical attacks, and fast hydrogen crossover leading to fairly reduced electrochemical performances, when they are used as membrane materials. Similar chemical degradation also occurs in PEFC electrodes containing PFSA ionomer binders used as both mechanical supporters and proton conductors and shortens PEFC lifetime. In this study, several approaches based on their morphological rearrangement to overcome these economical and technical issues are proposed. They include pore-filling membrane formation, nanodispersion, and their combination.
The volume of fluid (VOF) method is applied to study the effects of the gas channel cross-section shape on the removal characteristics of a water slug in a trapezoidal PEMFC gas channel. Two different open angles 50 and 60 degrees are selected to investigate the effect of cross-section shape on the behavior of a liquid water slug. In comparison to the 50 degrees case, the water slug is removed slightly faster for the 60 degrees case.
To study the effects of the gas channel wall contact angle on the behavior of a liquid water slug, numerical simulations are performed with the volume of fluid (VOF) method. Two different contact angle combinations on the side and top channel walls are selected. In comparison to the reference case, the water slug is removed faster when the hydrophobic contact angle is applied selectively in the corner section.
Perfluorinated sulfonic acid ionomers have been used as representative membrane materials in a wide range of applications. Though PFSA ionomers have been well known as chemically durable materials, their chemical resistances should be improved further to apply them to practical fuel cell systems operated under harsh conditions. One plausible solution would be to fabricate reinforced membranes composed of proton-conducting ionomers and chemically durable porous support films. In this study, pore-filling membranes are prepared via the impregnation of PFSA ionomers into porous PTFE support films. The objective of this study is to systematically investigate the influences of pore characteristics on proton transport behavior and electrochemical single performances.
Perfluorinated sulfonic acid (PFSA) ionomers have been widely used as membranes in the fields of green power generation and electrolysis. In spite of their high ion-conducting properties, it is difficult to apply them in the freestanding membrane state to harsh operation conditions owing to their chemical and electrochemical degradation issues. A promising membrane concept to satisfy this purpose would be “pore-filling membrane” composed of PFSA ionomers and porous PTFE support films. In this study, the porous PTFE support film treated with a cheap hydrophilic polymer is used as a reinforced material. Interestingly, the resulting PFSA-PTFE pore-filling membranes exhibit an extremely high proton conductivity with a fairly reduced ionomer content, which may give a valuable information to design a desirable pore-filling membrane.
본 연구에서는 탄화수소계열 고분자인 sulfonated poly arylene ether sulfone(SPAES) 고분자를 이용하여 연료전지용 전해질막을 제조하였으며 메탄올 투과도를 최적화 하기 위하여 소수성 고분자인 polyethersulfone(PES), Polyvinylidene fluoride (PVdF) 를 소량 첨가하여 블렌드막을 제조하였다. 제조된 분리막은 연료전지용 전해질 막으로써 요구되는 물리적, 화학적 안정성, 이온전도도, 셀 테스트등의 기본 물성을 측정하여 잠재적인 적용 가능성을 테스트 해보았다 또한 분자동력학 시뮬레이션을 이용하여 소수성 고분자와 SPAES고분자의 혼화성 측정과, 이온 및 메탄올 분자의 투과도를 예측해 보았으며 이를 이용하여 실제 실험 결과와 비교 분석을 진행하였다.
과불소계 술폰화 이오노머(perfluorinated sulfonic acid ionomers; PFSAs)는 뛰어난 수소이온전도성과 높은 내화학성으로 인해 고분자 전해질 연료전지(polymer electrolyte fuel cells)용 고체전해질로 널리 사용되고 있다. 그러나 PFSA 전해질은 가습-건조조건에서 연료전지가 구동에 따라 반복적인 팽윤-수축으로 인해 전극층이 전해질로부터 탈리되어 전기화학적 수명특성이 감소되는 문제점을 가지고 있다. 본 연구에서는 다공성 PTFE support film의 기공특성에 대한 이해를 바탕으 로 기공구조 내 나피온 이오노머를 함침시키는 강화막을 제조하였고, 기본특성을 평가하였다. 제조된 강화막은 매우 높은 수 소이온전도도(~0.5 S cm-1@90°C in liquid water)를 나타내었다.
수용성 고분자인 poly(vinyl alcohol) (PVA)에 가교제인 sulfosuccinic acid (SSA)를 첨가하여 가교반응을 통해 물에 용해되지 않는 막을 제조하였으며, 이온교환능력을 부여하기 위해 poly(4-styrene sulfonic acid-co-maleic acid) (PSSA_MA)를 PVA 질량대비 70, 80, 90 wt%로 달리 첨가하여 막을 제조하였다. 제조한 막의 특성을 알아보기 위해 FT-IR, 함수율, 이온교환용량, 이온전도도, 메탄올 투과도를 측정하였다. 함수율과 이온교환용량, 이온전도도는 PSSA_MA 함량이 증가할수록 증가하는 경향을 나타내었으며 메탄올 투과도는 감소하는 경향을 나타내었다. 특성평가 결과 본 실험 막의 최적 조성은 PVA10/SSA9/ PSSA_MA80으로 도출되었다