2015년부터 2018년까지 시설하우스에서 토마토 재배기간인 11월부터 이듬해 5월까지 충남 논산, 부여, 전북 익산에서 가루이의 종류와 발생 현황을 조사하였다. 반면 5월부터 10월까지는 억제재배를 하는 전북 장수지역에서 조사를 수행하였다. 시기별로 가루이를 채집하여 동정한 결과 온실가루이(Trialeurodes vaporariorum)와 담배가루이(Bemisia tabaci)의 발생이 확인되었다. 주로 온실가루이와 담배가루이가 혼재되어 있는 경우가 많았으며 두 종 중 담배가루이의 발생이 높게 나타났다. 가루이의 발생은 3월 하순부터 증가하기 시작하여 5월에는 밀도가 급격하게 증가하였고 수확기가 끝나는 시점에서는 밀도가 가장 높았다. 따라서, 시설하우스에서 가루이의 효율적 방제를 위해서는 촉성재배는 3월 상순부터, 억제작형은 6월 상순부터 예찰하고 밀도가 증가하기 전에 초기 방제하여야 할 것이다.
This research was performed to test the effects of oleic acid for the management of greenhouse whiteflies and tobacco whiteflies. Tobacco whiteflies, especially, are the vectors of tomato yellow leaf curl virus on tomato plants. Whiteflies are not only the vectors of various viruses but also the major insect pests that cause direct damages through sucking and induce sooty mold with their sweet dew on tomato plants. There are many eco-friendly management measures including the use of yellow sticky trap and natural enemies such as Eretmocerus eremicus and Amblyseius swirskii. However, these management measures have difficulties to implement in the greenhouse. Therefore, in this research, oleic acid was tested for its effect on the management of whiteflies at various concentrations of 1,000ppm, 2,000ppm, or 4,000ppm. As a result, treatments of 1,000ppm, 2,000ppm and 4,000ppm oleic acid showed the control value of 70%, 76% and 84%, respectively. In another test, treatments of 2,000ppm oleic acid, and control treatment of 1,5000ppm neem oil and 50ppm dinotefuran showed the control value of 82%, 75%, and 75%, respectively. Cost for one application of oleic acid and neem oil for 10a area would be 3,180 Won and 20,150 Won, respectively. As a result, it was assumed that the use of oleic acid would be a appropriate management measure.
We conducted the experiment in order to evaluate the control effect of whitefly using the sticky trap. Both Bemisia tabaci and Trialeurodes vaporariorum were more attracted to yellow sticky trap than white or blue colored traps. When yellow sticky traps were installed in different height around tomato, catches of B. tabaci were not significantly different among the traps and catches of T. vaporariorum on the traps in the upper position were more than lower position. T. vaporariorum was more attracted to trap when host plant is smaller. The attracted number to yellow sticky traps were not significantly different between whiteflies (B. tabaci and T. vaporariorum) and their parasitoids (Encarsia formosa and Eretmocerus mundus). Yellow sticky trap reduced population density of both B. tabaci and T. vaporariorum by more than 80% on tomato nursery in a screen cage. Population density of whiteflies in greenhouse installed yellow sticky traps was less than one third of that in untreated greenhouse.