This study analyzes the body shapes of lower-body obese female adolescents and proposes a slacks pattern suitable for their body type. Lower-body obesity is a prevalent type of teenage obesity, and our proposals aim to improve consumer satisfaction in ready-to-wear clothes across this demographic. We first observe characteristics of obese lower bodies, noting significantly above-average thigh and hip circumference. These figures indicate a high degree of curvature in obese lower bodies, along with a large drop value. Leveraging this data, we develop a novel slacks pattern using 3D avatars in a virtual simulation system. The formulas for the main areas of the pattern are as follows: front waist girth W/4+0.75cm+0.5cm, back waist girth W/4+0.5cm– 0.5cm, front hip girth H/4+1.25cm–0.5cm, back hip girth H/4+2cm+0.5cm, front crotch extension H/16+0.5cm, back crotch extension H/8+1cm. Results from appearance evaluations show that this pattern minimizes strain rate on the waist and hips, and its average score is significantly higher than that of an alternative pattern that was also evaluated. The minimized strain rate and high average score indicate that our pattern assigns a sufficient amount of space to the appropriate areas. Based on these results, we expect our research to inform slacks pattern development and production for obese consumers of all types.
This study seeks to increase the satisfaction of elderly men when purchasing and wearing ready-to-wear clothes by designing a slacks pattern suitable for their body type, which is determined by analyzing their lower bodies using virtual avatars and 3D virtual simulation system. The study found the following. First, based on virtual visualization of the comparison slacks pattern, the waistline position was consistently the lowest scored question among the evaluation survey items. Interpretation of this dissatisfaction suggests that, because the front waistline falls below the abdomen, the lower body, and especially the abdominal shape, is unpleasantly emphasized. Second, by using a virtual simulation system, the study developed a new slacks pattern that considered the concerns of elderly men. The primary measurement changes were as follows: front waist girth W/4+1.5cm+0.5cm, back waist girth W/4+1.5cm–0.5cm, front hip girth H/4+2.5cm–0.5cm, back hip girth H/4+2.5cm+0.5cm. Third, the new slacks pattern’s appearance was evaluated more highly than the comparison pattern, confirming the new pattern’s appropriateness for elderly men. This study demonstrates how slacks and other clothing patterns designed in a 3D virtual garment simulator can be used to design more appealing clothing for elderly men, increasing the satisfaction of wearing ready-made clothes at older ages.
The purpose of this study is to create a shirt sloper suitable for an elderly male body shape by producing virtual models using a 3D-virtualization program, making a torso prototype using the Yuka CAD system, and employing 3D simulation to virtualize and calibrate the model. First, the following three types of obese dummies are implemented through the CLO 3D program: Type 1 exhibits body fat in the lower body; Type 2 exhibits an obese abdomen; and Type 3 displays a balanced form of obesity. Second, for the design of the shirt pattern, the waist back length (measured value+1), back armhole depth (C/10+12+3+0.5~1.5), front armhole depth (back armhole depth 0~1), front interscye (2C/10‒1+0.5‒0.5), armscye depth (C/10+2+3.5+ 0.5), back interscye (2C/10‒1+1), front chest C (C/4+2.5+1), back chest C (C/4+2.5‒1), front hem C (C/4+2.5+1(+2)), back hem C (C/4+2.5‒1(+2)), cap height (AH/3‒5), and biceps width (Front AH‒1, Back AH‒1) are calculated. Third, the virtual attachment of the shirt pattern is resolved by increasing the front and back armhole depths, and the front and rear wrinkles are improved by adding a back armhole dart. The front hem lift and lateral pull caused by the protrusion of the abdomen are amended by increasing the margin of the chest, waist C, and hip C, with the appearance improved by balanced margin distribution in the front, back, and side panels. The improved retail pattern with an increase in the front armholes C was balanced on the torso plate.
The purpose of this study was to develop slacks patterns for obese-schoolgirls aged 10~12 by using a 3D virtual garment simulation system. The criteria for subjects in this study were girls who had a BMI of over 25kg/m2. A total of 155 schoolgirls who met these criteria were enrolled. The results were as follows: First, by using 3D virtual garment simulation, a new slacks pattern considerate of obese-schoolgirls was developed. The basic numerical formulae were as follows: Front and back hip girth of H/4-0.5+1 and H/4+0.5+1.5, front waist girth of W/4+1+0.5, back waist girth of W/4+2+0.5, front crotch extension of H/16-0.5, back crotch extension of H/8-0.5, front dart amount of 1, and back dart amount of 2. Second, according to the new slacks pattern appearance evaluation, the new slacks pattern scored more highly than the existing pattern for silhouette and ease amount, confirming that the new slacks pattern is appropriate for obese-schoolgirls. Additionally, the new slacks pattern was evaluated allowing for the proper space length of the waist, abdomen and hips. This study is expected to serve as important basic data for ensuing studies that may utilize a 3D virtual garment simulation system with 2D patterns and for future 3D pattern production program development.
This study aims to compare the ease of men's slim pants patterns, and to analyze the fit and appearance through the 3D virtual garment system. The study selected four educational materials and one industrial pattern of slim pants for a total of five items. The CLO 3D Modelist program was utilized to carry out the appearance evaluation through virtual wearing and opacity, and a comparison was performed regarding the clothing pressure when the virtual model was standing and walking. The results of our comparison of the patternmaking for slim pants showed that pattern C pants had the greatest ease on the waist circumference, while B pants showed no ease. The C and E pants also had the most ease on the hip measurement. In the appearance evaluation, A pants received the most favorable results, followed by D, E, B, and C, in descending order. The clothing pressure appeared to be mainly red on the waist, crotch, and hem when standing in all pants, so the clothing pressure was high. While walking, the stress appeared to be different for the left and right parts of the body, and the most significant difference was observed on the thigh area.
The purpose of this study was to develop slacks patterns for middle-aged abdomen-obese adult males by using the 3D virtual-twin and virtual-garment simulation system. The criteria for subjects in this study were males who had over 25kg/m2 of BMI, over 90cm of waist, and over 0.90 of WHR. A total of 211 adult males who met these criteria were enrolled. The results were as follows: first, a new slacks pattern considerate of abdomen-obese men was development. The basic numerical formula were as follows: front and back hip girth H/4+3.5, front waist girth W/4+1+0.5, back waist girth W/4+1-0.5, front crotch extension H/16, back crotch extension H/8-0.5, front pleats amount 2.7, and back dart amount 1.5. Second, according to the results of the new slacks patterns appearance evaluation, the new slacks pattern scored more highly than the existing pattern in silhouette and ease amount, confirming that the new slacks pattern is appropriate for the abdomen-obese men. Also, the new slacks pattern was evaluated allowing proper space length of waist, abdomen and hip. Virtual models of production through data from a 3D body scan, pattern draft and virtual garment digital program were applied to a prototypic design method in order to enhance the fitness of ready-made garments. The use of the virtual twin made it impossible to comprehend the appearances and ease correspondent to motions. In order to evaluate wearing fitness, therefore, the system should be improved so as to change arm positions and perform various motions.