In case of worm reducer, the worm and worm wheel are the significant design elements. Most of the worm and worm wheel are being importer and assembled because that the localization is inadequate. As the demand increases and the necessity of localization and precision grows, to develop them is now more important things.
In this study, we conducted the design, manufactured prototype and performance evaluation for worm reducer for dual lead 5.2:1 servo motor. The worm reducer is analyzed design reliability by finite element method. The performance evaluation for manufactured prototype worm reducer was conducted on the backlash, operation temperature and contact efficiency with/without load and satisfied for the all test items.
The agitator with a reducer are usually using on the process of a water treatment. However, working the reducer at the field, a lubricant oil can leak out. It causes an environment pollution and a water service/sewerage pollution problem. In this study, the reducer with a drywell structure is developed in order to prevent the oil leakage. The drywell structure is that the reducer bottom housing and the support column of an output shaft are united, and taper roller bearings are in the bottom housing. During the development of the reducer, a mockup and a prototype are made by using CAD and a high speed CNC machine. Then, to prove the performance of the prototype, the performance tests, unload working test and the mechanical torque efficiency test, are conducted by the torque meter device. Also a motor velocity(rpm) control system is developed by a PID control according to the working loads(MLSS data). The results of the test are shown that the maximum torque efficiency is 88.45%, the oil leakage and the abnormal noise do not occur during the work. Therefore the reducer with the drywell structure and the motor rpm PID control system is successfully developed.