검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2016.07 KCI 등재 서비스 종료(열람 제한)
        In recent years, waste-to-energy conversion using municipal solid waste (MSW) has been gaining attention in municipalities. Such conversion can reduce the dependency of non-renewable energy such as fossil fuels by generating solid refuse fuel (SRF) and diverting landfilling of the waste, although there is debate over the efficiency and economic aspect of the practice. With a growing interest in the conversion, D city is trying to adopt all possible measures towards achieving a material-cycle society by constructing a waste-to-energy town by 2018. The waste-to-energy town will be comprised of energy recovery facilities such as a mechanical treatment facility for fluff-type SRF with a power generation plant, and anaerobic digestion of food waste for biogas recovery. In this paper, we focus on estimating the energy recovery potentials and greenhouse gas (GHG) reduction of MSW by waste-to-energy conversion under three different scenarios. The data required for this study were obtained from available national statistics and reports, a literature review, and interviews with local authorities and industry experts. The lower heating value was calculated using the modified Dulong equation. Based on the results of this study, the energy recovery potential of MSW was calculated to be approximately 14,201-51,122 TOE/y, 12,426-44,732 TOE/y, and 8,520-30,673 TOE/y for Scenarios 1, 2, and 3, respectively. The reduction of GHG by such conversion was estimated to range from 10,074-36,938 tonCO2eq/y, depending on scenario. This study would help determine the production rate of fluff-type SRF to be converted into a form of energy. In addition, this study would aid waste management decision-makers to clarify the effectiveness of recycling of MSW and their corresponding energy recovery potentials, as well as to understand GHG reduction by the conversion.