PURPOSES : In this study, the amount of core stone breaking in the size of boulders by excavator braker work was analyzed quantitatively through on-site test construction. In addition, the factors affecting workload were studied.
METHODS : In the field test, 30 core stones of boulder sizes (1–4 m3) that appeared during earthworks, such as road construction and site construction, were collected from three locations, and the rock breaking work was carried out simultaneously using three excavator breakers(1.0-m3 volume). During the core stone breaking, progress was analyzed through video recordings. RESULTS : After the completion of rock breaking, the amount of breaking work was analyzed by direct loading and weighing using a 15- ton dump truck. As a result of the test construction, there was a significant difference in the amount of work completed per hour.
CONCLUSIONS : It was found that the results were greatly affected by not only the performance of the excavator braker equipment, but also the skill of the driver and the size of the core stones.
Recently, in construction vehicles like exacavator, many customers demand the interior parts to be convenient and handy to operate. Futermore, that parts had to be more lightweight and better quality and durability. For this reaseon, the combination switch, a part for operation of head lamps, wipers, horn, etc, had been designed as a new lightweight structure by using PA plastics material and had been changed the mechanical contact into electric non-contact by using Hall IC and FET.
Excavator working in the quarry and junkyard, is very difficult to move the things in the truck, because the position of the cab is low, eyesight is not visible. The cab visibility, safety and ease of operation is obtained by the development of the cab lifting system moving the position. To apply cab lifting system on the existing excavator, development of new sub-frame is positively necessary. In this study, the sub-frame, which is suitable for its main function, is manufactured and is verified through hardness test, finite element analysis and endurance test.
As contemporary building construction type is getting higher and deeper, construction equipment usage is getting more, and related fatal accidents are on an increasing trend. Because of this, a method was drawn which could grasp the present state of construction equipment management and manage safety of the equipment more easily for accident prevention by choosing 2 kinds of Construction equipment which cause safety accident frequently among the equipment mainly used in construction site. This study suggested a method about construction equipment safety management using "smart phone" base which could be used in safety management for construction equipment by whomever in construction site. After attachment of QR code included safety checklist, It became possible that site managers could check more efficiently by scanning with their smart phone when they inspect equipment. Moreover, by the construction interested who didn't know what and how they have to inspect could point out unsafe condition in the early stage of equipment entering or take unsafe one out of the site by using new smart phone safety checking system is installed, it became possible that critical accident caused by construction equipment was prevented in advance.
As contemporary building construction type is getting higher and deeper,construction equipment usage is getting more, and related fatal accidents are on an increasing trend. In these days, due to the deteriorating construction business circumstance, job finding problem of equipment operator, and dumping contract, equipment lease suppliers are putin jeopardy. In high-rise building construction, especially tower crane, mobile elevated work platform and other High place operation cars among construction equipment cause many critical accidents because of drop supply of construction biding bringing out dumping contract could cause unsafe and poor construction management. Because of this, a method was drawn which could grasp the present state of construction equipment management and manage safety of the equipment more easily for accident prevention by choosing 2 kinds of Construction equipment which cause safety accident frequently among the equipment mainly used in construction site. This study suggested a method about construction equipment safety management using ‘‘smart phone’ base which could be used in safety management for construction equipment by whomever in construction site. After attachment of QR code included safety checklist, It became possible that site managers could check more efficiently by scanning with their smart phone when they inspect equipment. Moreover, by the construction interested who didn’t know what and how they have to inspect could point out unsafe condition in the early stage of equipment entering or take unsafe one out of the site by using new smart phone safety checking system is installed, it became possible that critical accident caused by construction equipment was prevented in advance.
This study carried out the investigation about the actual conditions of the management, disaster analysis and safety awareness on excavator in one of construction equipment and tried to make it's preventive measures. To achieve this, first of all, the accident of the internal Construction Industry process Investigation and Analysis, and then analyze an cause of accident based on it. Next, For the conditions of safety management conduct a survey to Investigation and Analysis and Propose preventive measures. The results of this study can be summarized as follows. 1st, Status of safety awareness and management of construction equipment tend to seek quickly and easily for the interests of sight. 2nd, Half the precincts of the equipment is causing major disaster. 3rd, The risk of excavator operation's indicators and drivers is so much potential. 4th, The preventive measures are needed for strengthening safety education, professional legal education, changes in safety awareness, the development of prevention system.
굴삭기 붐의 변위와 응력 제한조건에 대해 각 판의 두께를 설계변수로 선정하여 자중을 최소화 하였다. 변위와 응력 제한조건식을 구성하기 위해 붐을 판 복합 구조물로 모델링한 후 3절점 삼각형 판요소의 유한요소 해석 프로그램으로 해석하여 상용 구조해석 프로그램인 ANSYS결과와 비교 검토하였다. 유한요소 해석 결과로부터 구성된 변위와 응력 제한조건을 직접 미분법으로 민감도를 해석하고 차분결과를 기준으로 검토하였다. 최종적으로 민감도 해석 프로그램과 최적화 알고리즘을 결합하여 판의 최적설계 프로그램을 구성하고 균일응력의 외팔보 문제로써 해외 정확도를 검증하였다. 굴삭기 붐에 대한 자중 최소화를 수행한 결과, 붐의 반쪽 모델의 초기무게가 453kgf이었고 최적설계 결과가 331kgf로서 약 27%의 자중 감소 효과를 가져왔다.