일반적으로 국지성 집중호우로 인한 산지하천의 돌발홍수 및 도심지의 침수 피해 등을 방지하기 위한 설계에는 포아송 클러스터 강우생성 모형(Poisson Cluster Rainfall Generation Model)과 같은 강수모의발생기법이 이용된다. 그러나 강수량의 1, 2차 모멘트 이상의 통계적 특성을 효과적으로 재현되지 못하고 극치강수량이 관측값에 비해 현저하게 과소 추정되는 등의 문제점이 있으며, 평균적인 강수량과 극치강수량의 통계적 분포특성을 동시에 구현하는 데 어려움이 있다. 이에 본 연구에서는 포아송 클러스터 강우생성 모형 중 공간상의 한 점에 대한 연속시간 강수모형으로 일 단위 이하 강수의 통계적 특성을 재현하는데 유용하다고 알려진 Modified Bartlet-Lewis Rectangular Pulse(MBLRP) 모형에 Bayesian MCMC(Markov Chain Monte Carlo)기법을 연계한 Bayesian MBLRP 모형을 제안하고자 한다. Bayesian MBLRP 모형은 각 매개변수간 결합확률분포를 계산하여 매개변수의 사후분포를 추정하며 이들 사후분포로부터 Monte Carlo 모의를 통해 다양한 시간 규모에서 극치값을 효과적으로 복원할 수 있었다. 사후분포로부터 추정된 강우시나리오는 강우-유출모의 시 유출되는 홍수량 및 홍수위에 대한 불확실성 범위를 정량적으로 제공하는 등 다양한 수문학적 문제에 적용이 가능할 것으로 판단된다.
수문자료의 계절성은 수자원관리의 관점에서 매우 중요한 요소로서 계절성의 변동은 댐의 운영, 홍수조절, 관개용수 관리 등 다양한 분야와 밀접한 관계를 가지고 있다. 수문빈도해석을 위해 POT 자료와 같은 부분기간치계열을 사용함으로써 자료의 확충, 계절성 확보, 발생빈도모형의 구축 등이 가능하다. 본 연구에서는 POT 자료의 장점을 효과적으로 빈도해석에 연계시키는 방법론으로서 POT 자료로부터 계절성을 추출하고 이를 빈도해석과 연계시켜 Bayesian 기법