본 연구에서는 대마난류(Tsushima Warm Current, TWC)의 유동 변화에 영향을 주는 요소를 파악하기 위하여 TWC의 수송량과 태 평양 순년진동(Pacific Decadal Oscillation, PDO) 및 엘니뇨 남방진동(El Niño - Southern Oscillation, ENSO)의 상호 관계 분석을 실시하였다. 25 년(1993~2018년) 동안의 TWC의 월별 수송량을 계산해보면 하계에 가장 크고 동계에 가장 작게 나타나는 계절변동 주기가 뚜렷하다. TWC 수송량과 PDO 및 ENSO의 한 척도인 Oceanic Niño Index(ONI) 각각의 주기성 파악을 위한 power spectrum 분석결과, TWC 수송량은 1년 주기 에서 peak를 보이지만 PDO 및 ONI는 뚜렷한 주기가 나타나지 않았다. 또한, TWC 수송량과 PDO 및 ONI의 상호 관계 파악을 위해 coherence 추정 방법을 이용하여 분석하였다. PDO 및 ONI의 coherence는 3년 이상의 장주기 변동에서 상호 기여도가 높으나 1년 이내의 단주기 변동 에서는 상호 기여도가 낮다. 그러나 TWC 수송량과 PDO 두 요소 간 0.8~1.2년 주기에서 coherence 값은 0.7로 상호 기여도가 높다. 한편 서수 도를 통과하는 TWC 수송량과 PDO는 Ⅰ기간(1993~2002년)과 Ⅲ기간(2010~2018년)에 역상관 관계성을 가진다. TWC 최대 수송량 (2.2 Sv 이 상)이 높게 나타나는 시기에 PDO 지수가 –1.0 이하의 음의 값, 2.2 Sv 이하로 작은 시기에 PDO 지수가 양의 값을 나타낸다. 따라서 장기적 인 PDO 지수 자료를 이용하면 TWC 수송량 변동 및 동해 연안역의 수온변화를 예측 또한 가능할 것으로 판단된다.
국제해사기구(IMO)의 온실가스(GHG) 감축 전략과 같은 환경규제를 강화함에 따라 친환경 선박 및 대체 연료 등 기술 개발이 확대되고 있다. 그의 일환으로 해운사와 조선사를 중심으로 에너지 저감과 풍력 추진 기술을 활용한 선박 추진 기술이 대두되고 있다. 풍 력 추진 기술의 확보와 실증 연구를 조선 및 해운 분야에 도입함으로써 친환경 기술을 활용한 고부가가치 시장을 창출할 수 있으며, 운항 선박의 연료 소비율을 줄임으로써 연비를 약 6~8 % 정도 향상시켜 GHG의 감축을 기대할 수 있다. 로터 세일(Rotor Sail, RS) 기술은 원형 실린더가 일정한 속도로 회전하여 유체를 통과할 때 실린더의 수직 방향으로 유체역학적 힘을 발생시키는 기술이다. 이를 마그누스 효과 (Magnus Effect)라고 하며, 본 연구에서는 선박에 설치된 풍력보조추진 시스템인 RS 주위의 난류 유동특성에 관한 수치해석적 연구를 통하 여 추진효율을 높일 수 있는 방안을 제시하고자 하였다. 그래서 RS의 공기 역학적 힘에 영향을 미치는 매개변수로써 속도비(Spin Ratio, SR)와 종횡비(Aspect Ratio, AR) 변화에 따른 양력계수( )와 항력계수( )를 도출하였고, RS 끝단 플레이트(End Plate, EP) 적용에 따른 RS 주변 유동특성을 비교하였다.
본 논문에서는 건물, 교량 및 해양구조물에 많이 적용되는 기본적인 형상인 벽면에 부착되어 있는 사각실린더 주변의 유동에 대해, 3개의 난류모델(v2-f 모델, k-ω 모델, k-ε 모델)을 적용하여 URANS 수치해석을 각각 수행하고, 그 결과를 비교하였다. 이 유동 은 물체의 모서리에서 발생하는 칼만와(karman vortex) 때문에 본질적으로 강한 비정상성을 가지고 있으며, 물체의 후류 영역에서도 매우 복잡한 유동구조를 가지고 있다고 알려져 있다. 3개의 난류모델이 적용된 수치해석으로부터 예측되는 평균 유동장과 지배적인 유동 의 주파수를 Wang et al.(2004; 2006)의 실험결과와 비교하였다. 비교 결과, v2-f 모델이 적용된 URANS 결과가 실험결과와 가장 유사한 결과를 보여주었고, k-ω 모델도 우수한 결과를 보인 반면, k-ε 모델은 본 대상 유동에 적용하기에 부족함을 확인하였다. 따라서 강한 박리가 존재하는 유동의 해석 시에는 v2-f 모델은 좋은 선택이다. 그리고 유동의 박리 제어를 위한 연구에 활용될 것으로 기대된다.
An elliptic blending Reynolds stress transport equation model for Newtonian fluids has been extended to predict polymer-induced drag reduction FENE-P fluids. The conformation tensor equation which is related to the polymer stress is adopted from the model form of Resende et al., and the models of redistribution and dissipation rate terms for the Reynolds stress transport equation are considered by the elliptic blending equation. Also, the new model terms for viscoelastic turbulent transport and viscoelastic dissipation in the Reynolds stress transport equation are introduced to consider the polymer additives effect. The prediction results are directly compared to the DNS data to assess the performance of the present model predictions.
본 연구는 거친 표면에서의 유동장 특성에 대해 실험 및 수치해석적 연구를 수행하였다. 완전 발달한 두꺼운 난류경계층은 풍동 내 바닥에 깔린 거친 표면을 이용하여 생성하였다. 평균유동과 난류강도 및 왜도와 같은 난류경계층의 특성을 열선유속계를 이용해 측정하였다. 풍동실험결과와의 비교를 위해 난류경계층은 수치해석을 이용하여 모사하였다. 거친 벽표면은 기본적으로 난류경계층 생성에 사용되었으며 입출구면에는 주기경계조건이 적용되었다. 본 연구결과로서 난류경계층이 거친 표면 위에서 성공적으로 생성 되었으며 평균유동과 난류강도 및 왜도와 같은 난류경계층의 특성은 지표면조도에 따라 달라진다는 것을 확인하였다.
It is known that the cooling performance can be improved about 5~12% and the COP (Coefficient of Performance) can be improved about 10~15% when the IHX (Internal Heat Exchanger) was applied in a vehicle. Thus, the aim of this study was to observe the influence of the fins shape on the turbulence flow and turbulence kinetic energy gradient in IHX. All the applied parameters of the fin such as rotation angle, spacing ratio, height ratio and mass flow rate are changed. The governing equations for the flow motion simulation were applied to continuity equation and Navier-Stokes equation, and the turbulence model was applied by the Shear Stress Transport(SST) model, which has the advantage of turbulence simulation. As the rotation angles of the front and back fins were increased, the difference in the maximum turbulent kinetic energy gradient between fins was reduced. As the inlet flow mass increased, the turbulent kinetic energy difference between front and back fins were increased. The turbulence area tended to increase with increasing fin height ratio.
최근 대기환경 및 난류해석분야에 관심을 받고 있는 대와류모사(LES)는 그 적용분야도 다양하다. 특히 LES를 이용한 난류 유동장 해석 시, 실제와 유사한 난류의 특성을 지니고 있는 입구조건을 부여하면 해석 도메인 내에서 실제 난류를 보다 빠르게 생성시 킬 수 있다. 본 연구에서는 LES를 이용한 해석으로 난류경계층을 수치해석 도메인 내에 빠르게 생성시킬 수 있도록 하기 위해 입구 조건으로 기존에 많이 적용하는 방법 중 하나인 합성법(synthesis method)이 이용되었고, 수치해석 도메인 내에 만들어진 난류특성들을 기존의 연구결과들과 비교하였다. 입구에 유입되는 몇몇 유동특성들은 기존의 연구결과와 동일한 값을 입력할 수 있으나 유동방향의 길이크기는 쉽지 않다. 그로인해 기존의 연구결과들과 비교하였을 때, 채널 내에서 발달한 난류특성들은 약간의 차이를 나타내지만 유입데이터와 큰 차이는 나타나지 않았다. 또한, 본 합성법을 통한 난류 입구유동의 길이크기에 따른 응답특성을 확인하기 위하여, 폭방 향으로 다양한 길이스케일 변화를 주어 그 특성을 확인하였다. 그 결과, 폭방향의 길이스케일이 커질수록 벽면의 전단응력의 회복이 빨라졌으며, 이는 난류경계층의 발달이 빨라지는 것을 의미한다.
평판에 설치된 스터드 주위의 천이 유동에 있어 격자 크기의 영향을 알기 위해 대형 와 모사를 수행하였다. 스터드에서 야기되는 주 유동 방향의 와 구조가 스터드 후류의 천이에 미치는 영향이 매우 크기 때문에 주 유동 방향, 벽면 수직 방향 그리고 횡 방향으로 격자 크기를 2배씩 증가시키거나 감소시키면서 스터드 후류에서 주 유동 방향의 와도를 비교하였다. 그 결과 스터드 후류에서 발달하는 주 유동 방향의 와도는 횡 방향 격자 크기에 매우 큰 영향을 받는 것을 알 수 있었으며, 이러한 결과를 바탕으로 Δx+min = 7.6, Δx+max = 41, Δy+wall = 0.25, Δz+= 7.6의 격자 크기를 결정하였다. 이러한 격자 구성에 있어 모든 방향으로 격자 크기를 동시에 2배씩 증가시키거나 감소시키면서 스터드에 작용하는 힘의 변화를 비교하여 격자 검증을 실시한 결과 평균 압력 계수와 항력 계수의 비보정 불확실성이 각각 21.6 %와 2.8 % 정도로 추정되었으며, 보정 불확실성은 각각 2 %와 0.3 %로 추정되었다.
The characteristics of the turbulent MHD channel flows are analysed within the elliptic blending model. The evaluation of additional terms representing the MDH interactions in the transport equation for the turbulent kinetic energy and dissipation rate is carried out firstly. And then, the improvement of model coefficients for the additional terms is achieved. Regardless of the magnetic field orientation, perpendicular and parrel to the main flow, the model coefficients for the additional terms are not changed to maintain the generality of the present model. The prediction results are directly compared to the DNS data to assess the performance of the present model.
난류유동에 의한 소음은 계산비용의 관점에서 음향 상사법을 이용하여 전산유체 기법과 결합해 다양한 해석모델이 연구되고 있다. FW-H 음향상사법을 이용한 유동소음해석의 연구가 활발히 이루어지고 있으나, 기존 문헌들의 결과에서는 계산비용의 관점에서 난류유동에 의한 소음성분을 생략하고 있다. 그러나, 최근의 연구에서 유동소음특성에 있어 난류소음의 중요성이 밝혀진바 있다. 본 논문에서는 RANS 난류모델과 투과성 경계면을 이용한 Permeable FW-H 음향상사법을 이용한 난류유동소음해석에 대해 연구하였다. 2D 실린더에 대하여 직접적으로 변동압력을 추출하는 직접법과 난류성분을 고려하지 않은 FW-H 상사법, 또 난류소음의 성분을 포함하는 Permeable FW-H 방법의 경우를 비교하였다. Permeable FW-H 방법을 통해 일반적으로 적용되는 FW-H 방법에서 해석 불가능한 난류에 의한 소음의 영향을 기존의 FW-H 방법과 동일한 계산비용으로 예측할 수 있었고, 적절한 투과성 경계면 설정을 통해 높은 정확도의 해석이 가능했다. Permeable FW-H 방법을 통한 난류유동해석 절차를 확립하였으며, 그 유용성을 확인했다.
An algebraic model for turbulent heat fluxes which is originally suggested by Suga & Abe is modified on the basis of the elliptic blending equation. In order to satisfy the heat transfer characteristics of near-wall region and the flow center region far away from the wall, the model coefficients of the algebraic heat flux model are modified by using the solution of the elliptic blending equation. The predictions of turbulent heat transfer in a plane channel flow have been carried out with constant wall heat flux and constant wall temperature difference boundary conditions respectively. Also, the predictions are performed at various Prandtl numbers to test the applicability of the model. The prediction results show that the distributions of the turbulent heat fluxes and mean temperature are well captured by the modified algebraic heat flux model
본 연구는 격자수, 첫 번째 격자까지의 거리(YP+), 난류모델 그리고 이산화 방법에 따른 해의 변화량을 조사하였다. 대상선박은 KVLCC이며, 격자구성과 유동해석은 상용코드인 Gridgen V15와 FLUENT를 사용하였다. 검토는 2가지 파트로 나누어서 수행하였다. 첫 번째 파트는 격자수, 난류모델 그리고 이산화 방법의 조합에 따른 해의 영향성을 평가하였다. 두 번째 파트는 적합한 YP+ 선정에 초점을 두었다. 격자수와 이산화 방법이 동일한 경우 마찰저항은 난류모델에 따라 약 1 % 내에서 차이를 보였으나, 압력저항은 약 9 %의 큰 차이를 보였다. YP+와 이산화 방법이 동일한 경우 YP+를 30과 50으로 설정하였을 때 마찰저항은 난류모델에 따라 약 1 % 내에서 차이를 보였으나, 100에서는 약 3 % 차이를 보였다. 반면, 압력저항은 YP+값에 무관하게 난류모델에 따라 약 10 % 차이를 보였다. 난류모델과 이산화 방법이 동일한 경우 격자 수 변화 따라 마찰저항, 압력저항 그리고 전 저항 모두 큰 차이를 보이지 않았다. 난류모델과 이산화 방법이 동일한 경우 YP+의 변화에 따라 마찰저항은 5~8 %의 큰 차이를 보였고, 압력저항은 큰 차이를 보이지 않았다.
본 연구에서는 트랜섬 선미 후류 난류유동 특성을 알아보기 위하여 Re = 3.5×103 및 Re = 7.0×103에서 2-프레임 그레이레벨 상호상관 PIV기법을 적용하여 실험을 수행하였다. 트랜섬 선미의 형상은 선저와 트랜섬이 이루는 각을 기준으로 45˚(모델 A), 90˚(모델 B) 및 135˚(모델 C)로 구분하여 적용하였다. 모델의 침수깊이는 40 mm로 자유수면과 접하도록 설치하였다. 난류유동을 평균하여 난류강도, 레이놀즈 응력, 난류운동에너지에 대한 통계적 유동정보를 제공하였다. 난류강도는 자유수면과 모델의 하부 박리유동과의 상호작용으로 강하게 작용하며, 레이놀즈 응력과 난류운동에너지는 모델 C형(Raked transom)에서 낮은 분포가 나타났다.
The paper reports on the prediction of turbulent heat transfer in flows between parallel plates with wall transpiration. The elliptic blending second moment closure for turbulent stresses and the GGDH model for turbulent heat fluxes are employed to predict the turbulent flow and heat transfer. The numerical results by the adopted models are directly compared to the DNS data and the measurements to assess the performance of the model predictions. The predictions show correctly the effect of deceleration and acceleration of the flow caused by the transpiration, and the anisotropy of the turbulence structure is augmented towards downstream by the fluid injection. The turbulence structure and heat transfer characteristics of transpired flows are well captured by the present turbulence and heat flux models.
난류 경계층 유동과 물체주위의 상관유동 및 그 물체 주위에서의 부압 생성과 관련, 그 유동특성에 대한 이해를 높이기 위하여 두꺼운 난류 경계층 내에 놓인 큐브물체 주위의 박리유동에 대해 연구를 수행하였다. 2차원의 PIV와 열선유속계를 이용하여 풍동 내에서 두꺼운 경계층을 생성시키는 실험이 수행되었다. 실험은 큐브의 높이 h에서 측정된 유속 U에 근거한 레이놀즈 수 18,600에서부터 349,000 의 범위에서 수행되었으며, 이 레이놀즈 수의 범위는 평균유동이 레이놀즈 수와 관계없이 충분히 크다고 판단된다. 본 연구에서 큐브의 선단주위와 상부에서의 유동장 측정결과들을 제시할 것이다. 연구결론으로 레이놀즈 효과는 평균표면압력이라든지 표면근처의 평균유속과 같은 평균유동특성에 별 영향을 미치지 않았지만, 섭동장은 큰 영향을 나타내고 있었다.