주기적이고 지속적으로 자료를 얻을 수 있는 위성영상은 지표면의 변화를 모니터링 하기 위한 매우 효과적인 자료이다. 위성영상을 이용한 기존의 변화탐지 연구는 두 시점의 지표 특성을 각각 분석해 서로 비교하여 변화를 밝혀내는 연구를 주로 해왔다. 그러나 최근에는 연속성을 갖는 다중 시기 위성영상으로부터 전체적인 경향이나 단기적인 변화를 찾아내는 연구에 관심이 높아지고 있다. 이 연구에서는 다중 시기 위성영상을 분석하기 위해 3차원 웨이블릿 변환 기반의 기법을 제안하고 테스트해보았다. 3차원 웨이블릿 변환을 이용하면 자료의 중요한 특성은 보존하면서 차원을 줄이는 것이 가능하다. 또한 다중 시기의 자료로부터 주요 패턴을 간추려 내고 공간, 시간적으로 인접한 주변 화소와의 관계를 파악할 수 있다. 연구 결과, 3차원 웨이블릿 변환 기법은 전체적인 경향성이나 특별한 변화 특성을 빠른 시간내에 밝혀내는 데 유용할 뿐만 아니라 분해 방향에 따라 각기 다른 정보를 제공해 주는 하위 밴드를 통해 새로운 정보를 얻을 수 있을 것으로 기대된다.
This study examined the efficiency of satellite images in terms of detecting wheat cultivation areas, and then analyzed the possibility of climate change through an correlation analysis of time series climate data from the western regions of Gyeongnam province, Korea. Furthermore, we analyzed the effect of climate change on wheat production through a multiple regression analysis with the time series wheat production and climate data. A relatively accurate distribution was achieved on the wheat cultivation area extracted through satellite image classification with an error rate of less than 10% in comparison to the statistical data. Upon correlation analysis with time series climate data, significant results were displayed in the following changes: the monthly mean temperature of the seedling stage, the monthly mean duration of sunshine, the monthly mean temperature of the growing period, the monthly mean humidity, the monthly mean temperature of the ripening stage, and the monthly mean ground temperature. Accordingly, in the study area, the monthly mean temperature, precipitation, and ground temperature generally increased whereas the monthly mean duration of sunshine and humidity decreased. The monthly mean wind speed did not display a particular change. In the multiple regression analysis results, the greatest effect on the production and productivity of wheat as climate factors included the annual mean humidity of the seedling stage, the annual mean temperature of the wintering period, and the annual mean ground temperature of the ripening stage. These results demonstrate that there is a change in wheat production depending on the climate change in the study area. in addition, it is determined that this study will be used as important basic data in the resolution of food security problems based on climate change.
The purpose of this study is to identify the effectiveness of satellite images in detecting the areas of rice production in the Barisal of Bangladesh. We also investigated the effect of climate change on the crop production through comparative analysis of rice production area and production statistics with climate data at multi-temporal time scale. This analysis found that the classification of rice fields extracted through satellite image and made as the number of rice cultivation areas did not exceed 10 percent of the statistical data. Climate data analysis showed that the average temperature during the ripening stage has the greatest impact on Boro’s production. It would be more make sense if you can describe the results of how precipitation is also important for rice production in addition to temperature. Therefore, it is believed that this research could serve as a key basis for solving food security issues due to climate change.
본 연구는 다중시기 원격탐사 자료를 이용하여 서산시의 토지피복 변화를 탐지하고, IPCC SRES 시나리오와 고해수면 복원자료를 바탕으로 해수면 상승에 따른 토지피복별 침수 취약성을 평가하였다. 연구결과, 서산시는 1982년부터 2009년 기간에 논의 면적이 가장 많이 증가하였고, 이밖에 인공구조물, 수역, 나대지, 초지 순이다. 반면, 갯벌 및 산림지, 해양, 밭, 습지는 감소하였다. 서산시의 해수면 상승에 따른 침수면적을 산출한 결과, 인공구조물과 수역 등은 침수 피해 면적이 증가하는 반면, 산림지, 습지, 밭 등은 침수 피해 면적이 감소하였다. 해수면 상승에 따른 침수 위험성을 평가하면, 가장 피해가 먼저 발생하는 곳은 담수호와 농경지 및 연안에 인접한 산업단지 지역이다. 따라서 향후 서산시는 해수면 상승에 대한 다양한 시나리오를 바탕으로 지역 단위 및 토지피복 유형별로 중장기적인 대책을 세우는 것이 필요하다.
The western coast of South Korea is famous for its large and broad tidal lands. Nevertheless, land reclamation, which has been conducted on a large scale, such as Sihwa embankment construction project has accelerated coastal environmental changes in the embankment inland. For monitoring of environmental change, vegetation change detecting of the embankment inland were carried out and field survey data compared with Landsat TM, ETM+, IKONOS, and EOC satellite remotely sensed data. In order to utilize multi-temporal remotely sensed images effectively, all data set with pixel size were analyzed by same geometric correction method. To detect the tidal land vegetation change, the spectral characteristics and spatial resolution of Landsat TM and ETM+ images were analyzed by SMA(spectral mixture analysis).
We obtained the 78.96% classification accuracy and Kappa index 0.2376 using March 2000 Landsat data. The SMA(spectral mixture analysis) results were considered with comparing of vegetation seasonal change detection method.