Water resources planning and management are, more and more, becoming important issue for water use and flood control due to the population increase, urbanization, and climate change. In particular, the estimating and the forecasting inflow of dam is the most important hydrologic issue for flood control and reliable water supply. Therefore, this study forecasted monthly inflow of Soyang river dam using VARMA model and 3 machine learning models. The forecasting models were constructed using monthly inflow data in the period of 1974 to 2016 and then the inflows were forecasted at 12- and 24-month ahead lead times. As a result, the forecasted monthly inflows by the models mostly were less than the observed ones, but the peak time and the variation pattern were well forecasted. Especially, the VARMA model showed very good performance in the forecasting. Therefore, the result of this study indicates that the VARMA model can be used efficiently to forecast hydrologic data and also used to establish water supply and management plan.
본 연구에서는 순환신경망을 이용한 댐 유입량 예측모형의 적용성 검토를 목적으로 하고 있으며, 이를 위해 소양강댐 유역 및 충주댐 유역을 대상 으로 그간 댐 운영을 통해 축적된 기상 및 수문 빅데이터를 활용하여 인공신경망 모형과 엘만 순환신경망 모형을 구축하였다. 모형의 학습과 예측 을 위하여 유역별 유입량, 강우량, 기온, 일조시간, 풍속자료가 입력자료로 사용되었고 10일간 일별 댐유입량 자료가 모델의 출력자료로 구조화 하여 학습을 진행한 후 검증을 목적으로 2016년 7월 ~ 2018년 6월까지 2개년에 대한 댐 유입량 예측을 수행하였다. 학습된 모형의 유입량 예측 결과를 비교분석한 결과, 소양강댐 유역에서는 인공신경망 모형과 순환신경망 모형 간 예측성능은 큰 차이를 보이지 않았으며, 충주댐 유역에서는 순환신경망 모형의 예측 결과가 인공신경망 모형에 비해 비교적 우수한 성능을 보임에 따라 엘만 순환신경망을 이용하여 댐 유입량 예측모형을 구축 할 경우 예측성능은 기존의 인공신경망 모형과 비슷하거나 다소 우수할 것으로 판단된다. 또한 엘만 순환신경망은 갈수기 댐 유입량 예측에 있어서 인공신경망에 비해 예측결과의 재현성이 우수한 것으로 나타났으며, 엘만 순환신경망 학습에 있어 다중 은닉층 구조가 단일 은닉층 구조보다 예측 성능 향상에 효과적인 것으로 분석되었다.
본 연구에서는 ANFIS 기반의 유황별 댐 예측유입량 산정 기법(Flow regime-based ANFIS Dam Inflow Prediction, FADIP)을 개발하고, 이를 단 순 ANFIS 기반 댐 예측유입량 산정 기법(ANFIS Dam Inflow Prediction, ADIP)과 비교 평가하였다. 대상유역은 국내 주요 다목적댐인 충주댐 유역과 소양강댐 유역을 선정하였으며, 입력자료로 댐 유입량, 강수량, 장기기상예보 자료를 사용하였다. 모델의 훈련 및 보정기간으로 충주댐 유역은 1987~2010년, 소양강댐 유역은 1984~2010년을 선정하였다. 검정기간은 두 유역 모두 2011~2016년을 활용하였다. 훈련 및 보정결과 FADIP 는 ADIP에 비해 평수기, 저수기에 훈련이 개선되는 것으로 나타났다. 검정결과 ADIP는 통계모델의 학습방법 특성상 일반적인 사상에 학습이 이루어져, 저수기에 예측성이 떨어지는 것으로 나타났다. 반면 FADIP는 ADIP에 비해 전기간의 정확도가 향상되었으며, 특히 평수기와 저수기에 예측성이 우수하였다. 따라서 FADIP는 다목적댐 이수관리에 활용성이 높을 것으로 판단된다.
본 연구에서는 충주댐 유역에 대해 다목적 댐 예측유입량 산정기법 BAYES-ESP를 개발하고 평가하였다. BAYES-ESP 기법은 기존 ESP (Ensemble Streamflow Prediction) 기법에 베이지안 이론을 적용하여 개발하였으며, 수문모델은 ABCD를 활용하였다. 입력자료는 기온, 강수량 자료와 댐 관측유입량 자료를 활용하였으며, 기온 및 강수량은 기상청, 국토교통부, 한국수자원공사의 지점관측자료, 댐 관측유입량은 한국수자원공사의 자 료를 이용하였다. 적용성 평가방법은 시계열 분석과 Skill Score를 활용하였으며, 평가기간은 1986~2015년이다. 시계열 분석 결과 ESP 댐 예측 유입량(ESP)는 매년 전망값의 큰 차이가 없었으며, 다우년 및 과우년의 예측성이 떨어지는 것으로 나타났다. BAYES-ESP 댐 예측유입량(BAYESESP) 는 ESP가 관측유입량에 비해 과소모의하는 경향을 보정하였으며, 특히 다우년에 개선효과가 있는 것으로 나타났다. 월별 평균 댐 관측유입량 과의 Skill Score 비교분석결과 ESP는 1~3월에 SS가 비교적 높은 값을 보였으며, 나머지 월에는 음의 값을 나타내었다. BAYES-ESP는 ESP와 관측 값 간의 선형적 관계를 갖는 1~3월에 ESP의 정확도를 향상시키는 것으로 나타났다. ESP 기법은 국내 강수특성상 우리나라에 적용하기에는 한계가 있었으며, 이를 개선한 BAYES-ESP 기법은 댐 유입량 예측연구에 가치가 있다고 판단된다.
가뭄의 피해를 줄이기 위해서는 시기적절한 용수관리와 지역주민의 절수 유도가 필요하며, 이를 위해서는 가뭄의 현황 및 전망에 대한 정보가 무 엇보다 중요하다. 특히 생·공용수를 공급하는 다목적댐의 경우 저수량에 대한 향후 전망은 용수관리를 위한 가장 중요한 정보이다. 이에 본 연구에 서는 핵밀도함수를 활용하여 유입량의 불확실성을 고려한 확률론적 저수량 예측 모형을 구축하고, 그 적용성과 활용성을 분석하였다. 확률론적 저 수량 예측 모형은 현재의 저수량을 기준으로 시간의 변화에 따른 저수량을 확률적으로 예측할 수 있다. 이를 통해 현재의 가뭄상황에서 향후 저수 량의 변화 양상을 파악하여 중장기적인 대응이 가능하고 특정시점의 목표 저수량을 달성하기 위한 용수 비축량을 산정할 수 있어 용수관리에 관한 의사결정을 위한 도구로 활용이 가능할 것으로 판단된다.
지 신뢰성 있는 댐유입량의 장기예측은 효율적인 댐운영에 필수적이다. 2000년대 이후 엘리뇨-남방진동(ENSO) 등의 전구기후지수와 지역수문기후 와의 원격상관성이 규명되면서, 이를 활용한 미래의 수문조건을 예측하기 위한 연구가 활발히 시도되고 있다. 본 연구에서는 안동댐유역을 대상으로 미국 NOAA에서 제공하는 40개 전구기후지수의 원격상관을 분석하고, 이를 기반으로 1개월 선행 댐유입량의 예측성능 및 활용성을 평가하였다. 본 연구에서는 1) 원격상관을 통해 강수와 기온을 예측하고 SWAT 모델을 이용하여 예측 댐유입량을 산정하는 방법(SWAT-Forecasted), 직접 댐유입 량을 예측하는 기법(CIR-Forecasted), 예측시점의 관측값이 과거자료에서 해당하는 순위(rank)에 근거한 방법(Rank-Observed)을 비교하였다. 결 과적으로 통계적 방법으로 댐유입량을 직접 예측하는 접근 방식(CIR-Forecasted)이 12월을 제외하고는 다른 방법에 비해 우수한 예측성을 보였다. 이것은 강수량 및 기온 예측정보를 일단위로 상세화하는 가정과 유출모델링과정에서 발생하는 불확실성이 예측결과에 포함되지 않기 때문인 것으로 판단된다. 본 연구결과는 원격상관기반의 1개월 선행 댐유입량 예측이 안동댐 운영에 유용한 정보를 제공할 수 있는 것을 시사하였다.
최근 국지성 집중호우, 돌발홍수와 같은 급격한 기상변화로 인한 피해가 증가함에 따라, 레이더와 위성영상 등 원격탐측 방법을 사용한 강우 예측 및 관측에 대한 관심이 높아지고 있다. 본 연구에서는 자료지향형 모형의 하나인 뉴로-퍼지기법(ANFIS : Adaptive Neuro Fuzzy Inference System)을 사용하여 유역 유출량을 산정하였고, 레이더 단기 강우예측 모형인 MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation; Germann et al., 2002, 2004) 강우예측자료를 입력변수의 하나로 사용하였다. 뉴로-퍼지기법 및 레이더 강우예측자료를 사용한 홍수량 산정의 적용성 평가를 위해 충주댐 상류유역의 2010년 및 2011년 홍수기에 발생한 6개의 강우사상을 사용하여 모형 생성 시 사용한 강우자료의 종류에 따른 결과를 비교하고, 입력변수 조합에 따른 15개 모형을 구성하여, 모형 구성과정의 군집화 방법을 변화시키며 이에 따른 결과를 비교 분석하였다. 연구 결과, 기 발생한 홍수사상 중 가장 큰 홍수사상을 사용하여 모형을 생성할 경우 홍수량 산정의 정확도가 높아지는 것으로 나타났고, 모형의 생성이 가능한 범위 안에서 비교적 clustering 반경이 클수록 홍수량 산정의 정확도가 높아지는 것으로 나타났다. 충주댐 유역의 홍수량 예측에서는 t+6~t+16시간의 예측에서 MAPLE 강수예측자료를 사용한 모형의 홍수량 산정 결과의 정확도가 상대적으로 높은 것으로 나타났다.
본 연구에서는 비선형적 모델인 웨이블렛-인공신경망을 적용하여 충주댐 유역의 일유입량을 예측하였다. 일반적으로 시계열 자료는 경향성, 주기성 및 추계학적 성분의 선형조합으로 이루어져 있다. 그러나 이러한 자료를 통해 시계열 모형 구축 시 경향성 및 주기성은 제거되어야하는 성분이다. 따라서 수문기상자료에 포함되어있는 경향성 및 주기성과 같은 비선형 동역학적 잡음과 측정과정에서 발생하는 단순잡음을 제거시키기 위해 디노이징기법인 웨이블렛 변환을 적용하였다. 웨이블렛 변환을 적용한 자료를 입력자료로 사용한 웨이블렛-인공신경망(WANN)과 원자료를 사용한 인공신경망(ANN)을 비교하였다. 산정결과 결정계수와 선형회귀를 통한 기울기는 WANN이 ANN보다 각각 0.032, 0.0115 더 큰 값을 나타냈고, 타겟값과 예측값 사이의 오차를 나타내는 RMSE와 RRMSE는 WANN 모형이 ANN 보다 각각 37.388, 0.099 더 작은 값을 나타냈다. 따라서 본 연구에서 적용한 WANN 모형이 ANN 보다 정확한 결과를 나타내었으며, 웨이블렛 변환을 통한 디노이징 기법의 적용이 잡음이 포함되어 있는 원자료의 사용보다 더 정확한 예측을 하는 것으로 판단된다.
본 연구에서는 GDAPS(T213) 중기 기상 수치예보 자료를 활용한 ESP (Ensemble Streamflow Prediction) 기법을 개발하여 미래에 발생할 수 있는 댐 유입량의 중장기적 확률예측을 위해 초과 확률구간별 댐 유입량을 예측하고 RPSS 검증기법으로 예측결과의 정확도를 분석하였다. 개발된 ESP시스템을 적용한 결과 일단위 개념의 확률예보는 높은 불확실성을 내포할 수 있고, 중장기 확률예보에 초점을 맞추어 1, 3, 7일 등의 예측시
본 연구에서는 소양강 유역을 대상으로 중장기 확률론적 댐 유입량 예측을 위해 30년 동안의 일단위 장기유출 해석을 수행하였다. 유출모형의 입력자료를 구축하기 위해 Anderson의 융설모형으로 적설에 대한 융설량을 계산하였고, Penman의 혼합기법으로 잠재증발량을 산정하였다. 또한, 기존 TOPMODEL의 적용 유역면적의 제약성을 극복하기 위해 대상유역을 적정 소유역으로 구분하고 운동파 하도홍수 추적기법을 통해 대유역 유출량을 계산할 수 있는 준분포형
본 논문에서는 월 댐유입량을 예측하는데 있어서 기상예보정보를 활용한 뉴로-퍼지 시스템의 적용성을 검토하였다. 뉴로-퍼지 알고리즘으로 퍼지이론과 신경망이론의 결합형태인 ANFIS(Adaptive Neuro-Fuzzy Inference System)을 이용하여 모형을 구성하였다. ANFIS의 공간분할에 의한 제어규칙의 선정에 있어 퍼지변수가 증가함에 따라 제어규칙이 기하급수적으로 증가하는 단점을 해결하기 위해 퍼지 클러스터링(Fuzzy Clustering)
본 연구에서는 홍수시 다목적댐의 효율적 운영을 위하여 상류로부터 유입되는 홍수유입량을 실시간으로 예측하기 위해 역전파 신경망 모형을 사용하여 댐유입량 예측모형(Neural Dam Inflow Forecasting Model; NDIFM)을 개발하였다. NDIFM은 다목적댐에 의한 하류의 홍수조절 비중이 큰 낙동강의 남강댐 유역에 적용하였으며, 입력자료로는 댐유역 평균강우량, 실측 댐유입량, 예측 댐유입량 통을 사용하여 실시간 댐유입량 예측의 가능성을 검